String Processing

Working with Text in R

Jesse Lecy

AV IMs
BARYE .

) \k { v1 .

Rachael Ray
finds inspiration
in cooking

her family

and her dog

Text is hard to analyze...

because language is fickle.

STOP CLUBBING, BABY SEALS

Once again, puncfuation makes all the difference ...

O OUR ORANAMSAR FARTY AT FD.COMORAVVARRADE

*'
v
o v ©
- 4)
p .' - N
N W . ¢

i 1 G ..“)"
ERS
PLEASE USE
CAUTION

WHEN HUNTING

F’EDEST RIANS
USING
WALK TR ML‘D

strings

STRINGS

functions

Function Use

grep() Find a word or phrase (returns the proper string).
grepl() Find a word or phrase (returns a logical vector).

regexpr() Find a part of a word or phrase - very flexible.

agrep() Find an approximate match.

sub() Replace the first occurence of a word or phrase.
gsub() Replace ALL occurences of a word or phrase.
paste() Combine multiple strings into a single string.

strsplit() Split one string into multiple strings.

substr() xtract part of a string.

*GREP: Globally search for a Regular Expression and Print

REGULAR EXPRESSIONS

Operator

Use

matches any single character (wild card for single character)

matches 0 or more characters (wild card for any number of characters)
start of a string

end of a string

match any time a character appears 0 or 1 times

match any time a character appears 1 or more times

OR statement - match either statement given

OR statement - match any of the characters given

match any characters EXCEPT those given in the list

escape character - turns an operator into plain text

Striﬂgs {_ c (Ir"'ablr , |rab|r , Irabclr , Irabdlr . |rabe|r . Irab 12” , |rab$|r}

match anything that starts with ad followed by any character

grep("ab.", strings, value = TRUE)

[1]

n abc "

'Ilabd'll

'Ilabe'll 'Ilab_ 12“ 'Ilab$'ll

match abec OR abd OUR abe

grep("ablc-e]l", strings, value = TRUE)

[1]

" abc "

1Iabd1l 1Iabe1l

match anything that is NOT abc

grep("ab["c]", strings, value = TRUE)

[1]

'Ilabd'll

'Ilabe'll

n ab 12“ 'Ilab_$'ll

Operator

Use

— 3 = 4

matches any single character (wild card for single character)

matches 0 or more characters (wild card for any number of characters)
start of a string

end of a string

match any time a character appears 0 or 1 times

match any time a character appears 1 or more times

OR statement - match either statement given

OR statement - match any of the characters given

match any characters EXCEPT those given in the list

escape character - turns an operator into plain text

QUANTIFIERS

Operator Use

* matches at least (0 times.

matches only one time

+ matches at least 1 times.
? matches at most 1 times.
{n} matches exactly n times.
{n,} matches at least n times.

{nm} matches between n and m times.

strings <- c¢("ht","hot","hoot","hooot")

match at least zero times

grep("h*t", strings, value = TRUE)

[1] "ht" "hot" "hoot" "hooot"

match ONLY one time

grep("h.t", strings, value = TRUE)

[1] "hot"

match exacily n times

grep("ho{2}t", strings, value = TRUE)

#4 [1] "hoot"

Operator Use

* matches at least 0 times.
matches only one time

+ matches at least 1 times.

matches at most 1 times.
matches exactly n times.
matches at least n times.

matches between n and m times.

POSITION

Operator Use

" matches the start of the STRING.
$ matches the end of the STRING.
\\b matches the empty string at either edge of a WORD.

WB matches the string provided it is NOT at an edge of a word.

strings <- c("abcd", "cdab", "cabd", "c abd")

anywhere in the text

grep("ab", strings, value = TRUE)

[1] "abcd" "cdab" "cabd" "c abd"

at the beginning of a STRING

grep("~"ab", strings, value = TRUE)
[1] "abcd"

at the end of a STRING
grep("ab$", strings, value = TRUE)

[1] "cdab"

Operator

Use

e

$
\\b
\\B

matches the start of the STRING.

matches the end of the STRING.

matches the empty string at either edge of a WORD.
matches the string provided it is NOT at an edge of a word.

fi

SO T UsED
FEGULAR,

Hiis

Regex in the wild:

advanced examples for inspiration

http://code.tutsplus.com/tutorials/8-regular-expressions-you-should-know--net-6149

Ma-f-c}v'ng a qusword: &

..and finally the end of the line.

Jha-20-9 =1(6,18)%/

& ‘ L ..letters, numbers, underscores, or hyphens...

The beginning of the line...

delimiters - required for regular expressions

Ma+c.hin3 a hex vale.:

The beginning of the line... @B
2 7]

Calla = IS e ~
exactly three

6

— .letters or numbers... —

|
/A#2([a-10-9]{6} 1 [a-10-91{3})$/

OF...

4.

..number sign(s)...
@ ..and finally the end of the line.

delimiters - required for regular expressions

Matching a 2 shg %

..and finally the end of the line.

/AN[a-20-9-1+$/
| '

— ..letters, numbers, or hyphens...

The beginning of the line...

delimiters - required for regular expressions

Matching ah email:
‘ The beginning of the line...

/AN([a-z0-9_\.-1+)@
o EE—

..letters, numbers, underscores, dots, or hyphens...

gular expressions

=

delimiters - required for re

([a-z0-9_\.-]1+)\.
|

..followed by a dot... ——

*"|OqQuIAS 1B ue uayy”

([a-2z\.1{2.,6})$ /
| | 0]

..letters or dots... ..and finally the end of the line.

Matching a URL: 15,

pPressions

X

delimiters - required for regular e

..colon and two forward slashes...

£ \

The begmnmg of the line... 6.
//\(https’? \/\ /)72
e -the letters “http"... (8.} ..the Ietter so

..numbers, letters dots, or hyphens...

([\da =+)\ L ([a=z\Ei2,6})

| |
.any number.. gy e...a dot... —‘ & tw :\,;v Q

L . letters or dots...

(L7 1)\ /?%8/ @

.letters, numbers, underscores, dots, or hyphens...

@ a~ zeroormore.. - -|—— ..aforward slash...
12,

1‘(’7’?9&

..any letter, number, or hyphen...) ..and finally the end of the line.

Mac-fhing an HTML +ag9:
i

The beginning of the line...

}(G | “Igf%;‘ — .letters... e
/< (e =z)+) (el +) *

e @ 9 ..characters that aren't “>"...
..characters (any)...
\

7
6.

...")”...7“

(B (BB |

i ‘ ! \ Q

e S ..the first capture group... —..""...
\s+\/>)5

W ot . @

L ...spacc-:as..ﬁ0 @] :
..and finally the end of the line.

delimiters - required for regular expressions

..don’t capture group...

@ .

fuzzy matching
agrep ()

ARE TWO WORDS THE SAME?

GEORGE BUSH GEORGE W. BUSH

BUREAUCRACY BUREACRACY

INTENTION VS, EXECUTION

7 Minimum Edit Distance

* Two strings and their alignment:

INTE«NTION

*x EXECUTION

Dan Jurafsky

Minimum Edit Distance
INTE+*xNTION

*EXECUTION

d s s i s

e If each operation has cost of 1
* Distance between theseis 5

* |f substitutions cost 2 (Levenshtein)

* Distance between them is 8

CALCULATE EDIT DISTANCE

> adist ("intention", "execution")
[,1]
[1,] 2
> adist ("intention", "execution",
costs=c(insertions=1, deletions=1, substitutions=2))
[,1]

RETURN WORD WITH EDIT DISTANCE < 10%

> agrep ("lazy", c("daisy", "lasy", "fazed"), value = TRUE)
[1] nlasy\\

“grep” stands for “globally search a regular expression and print”

“a” stands for approximate matching

practice

Dear John:

| want a man who knows what love is all about. You are generous, kind, thoughtful. People who are
not like you admit to being useless and inferior. You have ruined me for other men. | yearn for you. |
have no feelings whatsoever when we’re apart. | can be forever happy.

Will you let me be yours?

Gloria

Dear John:

| want a man who knows what love is. All about you are generous, kind, thoughtful people, who are
not like you. Admit to being useless and inferior. You have ruined me. For other men, | yearn. For you,
| have no feelings whatsoever. When we’re apart, | can be forever happy. Will you let me be?

Yours,

Gloria

INSTRUCTIONS

Import text

Standardize letter case

Remove commas, quote marks, special characters
Delete empty lines

Split the text into sentences

o Uk w e

Build a network based upon all words in each sentence

FUNCTIONS

Import Text File:

readlLines (“filename.txt”)

Uppercase / Lowercase

toupper (x=),

tolower (x=)

Find and Replace All:

gsub (pattern=, replacement=,

Split Text by Delimiter:

strsplit (x=,

split=)

X:

)

=

where x 1s a character vector

pattern = what to replace
replacement = new text
X = character vector

X = character vector
split = delimiter where splits

occur

LOAD TEXT FILE

setwd (“..")

X <- readLines ("Dear John 1l.txt", warn=FALSE)

STANDARDIZE CASE

X <- toupper

X

REMOVE SPECIAL CHARACTERS

X <= gsub(" X)

X <- gsub("we’re", "we are",
x <- gSU.b(n\\:n, nn, X)

x <- gSU.b(n\\?n, nn, X)

X

REMOVE BLANK LINES

SPLIT INTO SENTENCES

strsplit(x, split="\\.")

Letter 2

Letter 1

Word Ties Shared in Both Letters

Word Ties Unique to Letter 1 Word Ties Unique to Letter 2

