Introduction

NOTE: Values below are duplicates from Middle Atlantic Division and serve solely as an example

The New Markets Tax Credit (NMTC) program was created in 2000 and authorized by Congress under the Community Renewal and Tax Relief Act of 2000 (CDFI Fund, 2022). The program distributes tax credit dollars to Community Development Entities who award Qualified Low-Income Community Investments (QLICIs), such as business loans, to investors in Low-Income Communities. The ongoing goal of the NMTC program is to improve low income communities by encouraging developers to build new projects that can create jobs and provide additional services within financially risky communities (Novogradac, 2023). There are numerous eligibility criteria to qualify census tracts recipients.

The Low Income Housing Tax Credit (LIHTC) program is a much older program that was started in 1986 and authorized by Congress under the Tax Reform Act of 1986. Most recently, the Inflation Reduction Act of 2022 increased credits/bonuses (Urban Institute, 2018; Congressional Research Service, 2023). In addition, in contrast to CDE/QLICI model of the NMTC program, LIHTC dollars go directly to investors, but the funds are limited to affordable housing developments for economically disadvantaged individuals. The Urban Institute (2018) describes the program as “an incentive to make equity investments in affordable rental housing. The equity raised is used to construct new properties, acquire and renovate existing buildings, and refinance and renovate existing affordable rental housing properties that have previously been financed through other federal housing programs” (Urban Institute, 2018).

In the following analysis we explore correlations between these programs and the amount of funding they provide to our identified areas of vulnerability within the South Atlantic Division. Specifically we discovered that there is a strong positive correlation between NMTC dollars and SVI Flag Counts in 2010 for the majority of counties/census tracts in [STATES]. While not quite as strong, we still found a moderate correlation between LIHTC dollars and SVI Flag Counts in 2010.

Library

# Turn off scientific notation
options(scipen=999)

# Load packages
library(here)        # relative file paths for reproducibility
library(tidyverse)   # data wrangling
library(stringi)     # string data wrangling
library(tigris)      # US census TIGER/Line shapefiles
library(ggplot2)     # data visualization
library(cowplot)     # data visualization plotting
library(gridExtra)   # grid for data visualizations
library(biscale)     # bivariate mapping
library(kableExtra)  # table formatting
library(scales)      # palette and number formatting
library(cluster)     # clustering algorithms
library(factoextra)  # clustering algorithms & visualization

Functions

import::here( "fips_census_regions",
              "load_svi_data",
              "merge_svi_data",
              "census_division",
              "flag_summarize",
              "summarize_county_nmtc",
              "summarize_county_lihtc",
              "elbow_plot",
             # notice the use of here::here() that points to the .R file
             # where all these R objects are created
             .from = here::here("analysis/project_data_steps_minnie.R"),
             .character_only = TRUE)

SVI Data

# Load SVI data sets
svi_2010 <- readRDS(here::here("data/raw/Census_Data_SVI/svi_2010_trt10.rds"))
svi_2020 <- readRDS(here::here("data/raw/Census_Data_SVI/svi_2020_trt10.rds"))

# Load mapping data sets
svi_county_map2010 <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_county_svi_flags10.rds")))

svi_county_map2020 <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_county_svi_flags20.rds")))

divisional_st_sf <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_st_sf.rds")))

NMTC & LIHTC Data

# Load NMTC & LIHTC Tract Eligibility Data

orig_nmtc <- readxl::read_excel(here::here("data/raw/NMTC_LIHTC_tracts/nmtc_2011-2015_lic_110217.xlsx"), sheet="NMTC LICs 2011-2015 ACS")

high_migration_nmtc <- readxl::read_excel(here::here("data/raw/NMTC_LIHTC_tracts/nmtc_2011-2015_lic_110217.xlsx"), sheet="High migration tracts", skip=1)

nmtc_awards_data <- readxl::read_excel(here::here("data/raw/NMTC_LIHTC_tracts/NMTC_Public_Data_Release_includes_FY_2021_Data_final.xlsx"), sheet = "Projects 2 - Data Set PUBLISH.P")

lihtc_eligible <- readxl::read_excel(here::here("data/raw/NMTC_LIHTC_tracts/qct_data_2010_2011_2012.xlsx"))

lihtc_projects <- read.csv(here::here("data/raw/NMTC_LIHTC_tracts/lihtcpub/LIHTCPUB.csv"))

Load 2010 SVI Data

# National 2010 Data
svi_2010_national <- load_svi_data(svi_2010, percentile=.75)
svi_2010_national %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1 RPL_THEME1 F_THEME1 SPL_THEME2 RPL_THEME2 F_THEME2 SPL_THEME3 RPL_THEME3 F_THEME3 SPL_THEME4 RPL_THEME4 F_THEME4 SPL_THEMES RPL_THEMES F_TOTAL
01001020100 01 001 020100 AL Alabama Autauga County 1 South Region 6 East South Central Division 1809 771 696 297 1809 16.41791 0.3871 0 36 889 4.049494 0.1790 0 127 598 21.23746 0.20770 0 47 98 47.95918 0.5767 0 174 696 25.00000 0.18790 0 196 1242 15.780998 0.6093 0 186 1759 10.574190 0.3790 0 222 12.271973 0.4876 0 445 24.59923 0.5473 0 298 1335 22.32210 0.8454 1 27 545 4.954128 0.09275 0 36 1705 2.1114370 0.59040 0 385 1809 21.282477 0.4524 0 771 0 0.0000000 0.1224 0 92 11.9325551 0.8005 1 0 696 0.0000000 0.1238 0 50 696 7.183908 0.6134 0 0 1809 0 0.364 0 1.74230 0.28200 0 2.56345 0.5296 1 0.4524 0.4482 0 2.0241 0.2519 1 6.78225 0.3278 2
01001020200 01 001 020200 AL Alabama Autauga County 1 South Region 6 East South Central Division 2020 816 730 495 1992 24.84940 0.5954 0 68 834 8.153477 0.5754 0 49 439 11.16173 0.02067 0 105 291 36.08247 0.3019 0 154 730 21.09589 0.09312 0 339 1265 26.798419 0.8392 1 313 2012 15.556660 0.6000 0 204 10.099010 0.3419 0 597 29.55446 0.8192 1 359 1515 23.69637 0.8791 1 132 456 28.947368 0.83510 1 15 1890 0.7936508 0.40130 0 1243 2020 61.534653 0.7781 1 816 0 0.0000000 0.1224 0 34 4.1666667 0.6664 0 13 730 1.7808219 0.5406 0 115 730 15.753425 0.8382 1 0 2020 0 0.364 0 2.70312 0.56650 1 3.27660 0.8614 3 0.7781 0.7709 1 2.5316 0.5047 1 9.28942 0.6832 6
01001020300 01 001 020300 AL Alabama Autauga County 1 South Region 6 East South Central Division 3543 1403 1287 656 3533 18.56779 0.4443 0 93 1552 5.992268 0.3724 0 273 957 28.52665 0.45780 0 178 330 53.93939 0.7152 0 451 1287 35.04274 0.49930 0 346 2260 15.309734 0.5950 0 252 3102 8.123791 0.2596 0 487 13.745413 0.5868 0 998 28.16822 0.7606 1 371 2224 16.68165 0.6266 0 126 913 13.800657 0.46350 0 0 3365 0.0000000 0.09298 0 637 3543 17.979114 0.4049 0 1403 10 0.7127584 0.3015 0 2 0.1425517 0.4407 0 0 1287 0.0000000 0.1238 0 101 1287 7.847708 0.6443 0 0 3543 0 0.364 0 2.17060 0.41010 0 2.53048 0.5116 1 0.4049 0.4011 0 1.8743 0.1942 0 6.98028 0.3576 1
01001020400 01 001 020400 AL Alabama Autauga County 1 South Region 6 East South Central Division 4840 1957 1839 501 4840 10.35124 0.2177 0 101 2129 4.744011 0.2447 0 310 1549 20.01291 0.17080 0 89 290 30.68966 0.2044 0 399 1839 21.69657 0.10540 0 274 3280 8.353658 0.3205 0 399 4293 9.294200 0.3171 0 955 19.731405 0.8643 1 1195 24.69008 0.5530 0 625 3328 18.78005 0.7233 0 152 1374 11.062591 0.34710 0 10 4537 0.2204100 0.22560 0 297 4840 6.136364 0.1647 0 1957 33 1.6862545 0.3843 0 25 1.2774655 0.5516 0 14 1839 0.7612833 0.3564 0 19 1839 1.033170 0.1127 0 0 4840 0 0.364 0 1.20540 0.13470 0 2.71330 0.6129 1 0.1647 0.1632 0 1.7690 0.1591 0 5.85240 0.1954 1
01001020500 01 001 020500 AL Alabama Autauga County 1 South Region 6 East South Central Division 9938 3969 3741 1096 9938 11.02838 0.2364 0 188 4937 3.807981 0.1577 0 426 2406 17.70574 0.11050 0 528 1335 39.55056 0.3753 0 954 3741 25.50120 0.20140 0 293 5983 4.897209 0.1655 0 740 10110 7.319486 0.2211 0 837 8.422218 0.2408 0 3012 30.30791 0.8455 1 759 7155 10.60797 0.2668 0 476 2529 18.821669 0.63540 0 78 9297 0.8389803 0.41110 0 1970 9938 19.822902 0.4330 0 3969 306 7.7097506 0.6153 0 0 0.0000000 0.2198 0 7 3741 0.1871157 0.2535 0 223 3741 5.960973 0.5483 0 0 9938 0 0.364 0 0.98210 0.08468 0 2.39960 0.4381 1 0.4330 0.4290 0 2.0009 0.2430 0 5.81560 0.1905 1
01001020600 01 001 020600 AL Alabama Autauga County 1 South Region 6 East South Central Division 3402 1456 1308 735 3402 21.60494 0.5199 0 134 1720 7.790698 0.5436 0 242 1032 23.44961 0.28010 0 62 276 22.46377 0.1035 0 304 1308 23.24159 0.14070 0 301 2151 13.993491 0.5510 0 355 3445 10.304790 0.3656 0 386 11.346267 0.4232 0 931 27.36626 0.7200 0 440 2439 18.04018 0.6912 0 143 924 15.476190 0.52900 0 4 3254 0.1229256 0.19840 0 723 3402 21.252205 0.4519 0 1456 18 1.2362637 0.3507 0 433 29.7390110 0.9468 1 16 1308 1.2232416 0.4493 0 28 1308 2.140673 0.2298 0 0 3402 0 0.364 0 2.12080 0.39510 0 2.56180 0.5288 0 0.4519 0.4477 0 2.3406 0.4048 1 7.47510 0.4314 1
# Divisional 2010 Data
svi_2010_divisional <- load_svi_data(svi_2010, rank_by = "divisional", location = census_division, percentile=.75)
svi_2010_divisional %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
  • DATA TABLE

Load 2020 Data

# National 2020 Data
svi_2020_national <- load_svi_data(svi_2020, percentile=.75)
svi_2020_national %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1 RPL_THEME1 F_THEME1 SPL_THEME2 RPL_THEME2 F_THEME2 SPL_THEME3 RPL_THEME3 F_THEME3 SPL_THEME4 RPL_THEME4 F_THEME4 SPL_THEMES RPL_THEMES F_TOTAL
01001020100 01 001 020100 AL Alabama Autauga County 1 South Region 6 East South Central Division 1941 710 693 352 1941 18.13498 0.4630 0 18 852 2.112676 0.15070 0 81 507 15.976331 0.26320 0 63 186 33.87097 0.2913 0 144 693 20.77922 0.2230 0 187 1309 14.285714 0.6928 0 187 1941 9.634209 0.6617 0 295 15.19835 0.4601 0 415 21.38073 0.4681 0 391 1526 25.62254 0.9011 1 58 555 10.45045 0.3451 0 0 1843 0.0000000 0.09479 0 437 1941 22.51417 0.3902 0 710 0 0.0000000 0.1079 0 88 12.3943662 0.8263 1 0 693 0.0000000 0.09796 0 10 693 1.443001 0.1643 0 0 1941 0.000000 0.1831 0 2.19120 0.4084 0 2.26919 0.3503 1 0.3902 0.3869 0 1.37956 0.07216 1 6.23015 0.2314 2
01001020200 01 001 020200 AL Alabama Autauga County 1 South Region 6 East South Central Division 1757 720 573 384 1511 25.41363 0.6427 0 29 717 4.044630 0.41320 0 33 392 8.418367 0.03542 0 116 181 64.08840 0.9086 1 149 573 26.00349 0.4041 0 139 1313 10.586443 0.5601 0 91 1533 5.936073 0.4343 0 284 16.16392 0.5169 0 325 18.49744 0.2851 0 164 1208 13.57616 0.4127 0 42 359 11.69916 0.3998 0 0 1651 0.0000000 0.09479 0 1116 1757 63.51736 0.7591 1 720 3 0.4166667 0.2470 0 5 0.6944444 0.5106 0 9 573 1.5706806 0.46880 0 57 573 9.947644 0.7317 0 212 1757 12.066022 0.9549 1 2.45440 0.4888 0 1.70929 0.1025 0 0.7591 0.7527 1 2.91300 0.68620 1 7.83579 0.4802 2
01001020300 01 001 020300 AL Alabama Autauga County 1 South Region 6 East South Central Division 3694 1464 1351 842 3694 22.79372 0.5833 0 53 1994 2.657974 0.22050 0 117 967 12.099276 0.11370 0 147 384 38.28125 0.3856 0 264 1351 19.54108 0.1827 0 317 2477 12.797739 0.6460 0 127 3673 3.457664 0.2308 0 464 12.56091 0.3088 0 929 25.14889 0.7080 0 473 2744 17.23761 0.6211 0 263 975 26.97436 0.8234 1 128 3586 3.5694367 0.70770 0 1331 3694 36.03140 0.5515 0 1464 26 1.7759563 0.3675 0 14 0.9562842 0.5389 0 35 1351 2.5906736 0.60550 0 42 1351 3.108808 0.3415 0 0 3694 0.000000 0.1831 0 1.86330 0.3063 0 3.16900 0.8380 1 0.5515 0.5468 0 2.03650 0.26830 0 7.62030 0.4460 1
01001020400 01 001 020400 AL Alabama Autauga County 1 South Region 6 East South Central Division 3539 1741 1636 503 3539 14.21305 0.3472 0 39 1658 2.352232 0.17990 0 219 1290 16.976744 0.30880 0 74 346 21.38728 0.1037 0 293 1636 17.90954 0.1333 0 173 2775 6.234234 0.3351 0 169 3529 4.788892 0.3448 0 969 27.38062 0.9225 1 510 14.41085 0.1208 0 670 3019 22.19278 0.8194 1 148 1137 13.01671 0.4541 0 89 3409 2.6107363 0.64690 0 454 3539 12.82848 0.2364 0 1741 143 8.2136703 0.6028 0 0 0.0000000 0.2186 0 10 1636 0.6112469 0.28340 0 72 1636 4.400978 0.4538 0 0 3539 0.000000 0.1831 0 1.34030 0.1575 0 2.96370 0.7496 2 0.2364 0.2344 0 1.74170 0.16270 0 6.28210 0.2389 2
01001020500 01 001 020500 AL Alabama Autauga County 1 South Region 6 East South Central Division 10674 4504 4424 1626 10509 15.47245 0.3851 0 81 5048 1.604596 0.09431 0 321 2299 13.962592 0.17970 0 711 2125 33.45882 0.2836 0 1032 4424 23.32731 0.3109 0 531 6816 7.790493 0.4251 0 301 10046 2.996217 0.1894 0 1613 15.11149 0.4553 0 2765 25.90407 0.7494 0 1124 7281 15.43744 0.5253 0 342 2912 11.74451 0.4019 0 52 9920 0.5241935 0.35230 0 2603 10674 24.38636 0.4160 0 4504 703 15.6083481 0.7378 0 29 0.6438721 0.5037 0 37 4424 0.8363472 0.33420 0 207 4424 4.679023 0.4754 0 176 10674 1.648866 0.7598 1 1.40481 0.1743 0 2.48420 0.4802 0 0.4160 0.4125 0 2.81090 0.63730 1 7.11591 0.3654 1
01001020600 01 001 020600 AL Alabama Autauga County 1 South Region 6 East South Central Division 3536 1464 1330 1279 3523 36.30429 0.8215 1 34 1223 2.780049 0.23780 0 321 1111 28.892889 0.75870 1 67 219 30.59361 0.2305 0 388 1330 29.17293 0.5075 0 306 2380 12.857143 0.6480 0 415 3496 11.870709 0.7535 1 547 15.46946 0.4760 0 982 27.77149 0.8327 1 729 2514 28.99761 0.9488 1 95 880 10.79545 0.3601 0 0 3394 0.0000000 0.09479 0 985 3536 27.85633 0.4608 0 1464 0 0.0000000 0.1079 0 364 24.8633880 0.9300 1 0 1330 0.0000000 0.09796 0 17 1330 1.278196 0.1463 0 0 3536 0.000000 0.1831 0 2.96830 0.6434 2 2.71239 0.6156 2 0.4608 0.4569 0 1.46526 0.08976 1 7.60675 0.4440 5
# Divisional 2020 Data
svi_2020_divisional <- load_svi_data(svi_2020, rank_by = "divisional", location =  census_division, percentile=.75)
svi_2020_divisional %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
  • DATA TABLE

Merge 2010 and 2020 Data

# Find tracts with divisional data in both 2010 and 2020
svi_divisional <- merge_svi_data(svi_2010_divisional, svi_2020_divisional)
svi_divisional %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
  • DATA TABLE
# Find tracts with national data in both 2010 and 2020
svi_national <- merge_svi_data(svi_2010_national, svi_2020_national)
svi_national %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20
01001020100 01 001 020100 AL Alabama Autauga County 1 South Region 6 East South Central Division 1809 771 696 297 1809 16.41791 0.3871 0 36 889 4.049494 0.1790 0 127 598 21.23746 0.20770 0 47 98 47.95918 0.5767 0 174 696 25.00000 0.18790 0 196 1242 15.780998 0.6093 0 186 1759 10.574190 0.3790 0 222 12.271973 0.4876 0 445 24.59923 0.5473 0 298 1335 22.32210 0.8454 1 27 545 4.954128 0.09275 0 36 1705 2.1114370 0.59040 0 385 1809 21.282477 0.4524 0 771 0 0.0000000 0.1224 0 92 11.9325551 0.8005 1 0 696 0.0000000 0.1238 0 50 696 7.183908 0.6134 0 0 1809 0 0.364 0 1.74230 0.28200 0 2.56345 0.5296 1 0.4524 0.4482 0 2.0241 0.2519 1 6.78225 0.3278 2 1941 710 693 352 1941 18.13498 0.4630 0 18 852 2.112676 0.15070 0 81 507 15.976331 0.26320 0 63 186 33.87097 0.2913 0 144 693 20.77922 0.2230 0 187 1309 14.285714 0.6928 0 187 1941 9.634209 0.6617 0 295 15.19835 0.4601 0 415 21.38073 0.4681 0 391 1526 25.62254 0.9011 1 58 555 10.45045 0.3451 0 0 1843 0.0000000 0.09479 0 437 1941 22.51417 0.3902 0 710 0 0.0000000 0.1079 0 88 12.3943662 0.8263 1 0 693 0.0000000 0.09796 0 10 693 1.443001 0.1643 0 0 1941 0.000000 0.1831 0 2.19120 0.4084 0 2.26919 0.3503 1 0.3902 0.3869 0 1.37956 0.07216 1 6.23015 0.2314 2
01001020200 01 001 020200 AL Alabama Autauga County 1 South Region 6 East South Central Division 2020 816 730 495 1992 24.84940 0.5954 0 68 834 8.153477 0.5754 0 49 439 11.16173 0.02067 0 105 291 36.08247 0.3019 0 154 730 21.09589 0.09312 0 339 1265 26.798419 0.8392 1 313 2012 15.556660 0.6000 0 204 10.099010 0.3419 0 597 29.55446 0.8192 1 359 1515 23.69637 0.8791 1 132 456 28.947368 0.83510 1 15 1890 0.7936508 0.40130 0 1243 2020 61.534653 0.7781 1 816 0 0.0000000 0.1224 0 34 4.1666667 0.6664 0 13 730 1.7808219 0.5406 0 115 730 15.753425 0.8382 1 0 2020 0 0.364 0 2.70312 0.56650 1 3.27660 0.8614 3 0.7781 0.7709 1 2.5316 0.5047 1 9.28942 0.6832 6 1757 720 573 384 1511 25.41363 0.6427 0 29 717 4.044630 0.41320 0 33 392 8.418367 0.03542 0 116 181 64.08840 0.9086 1 149 573 26.00349 0.4041 0 139 1313 10.586443 0.5601 0 91 1533 5.936073 0.4343 0 284 16.16392 0.5169 0 325 18.49744 0.2851 0 164 1208 13.57616 0.4127 0 42 359 11.69916 0.3998 0 0 1651 0.0000000 0.09479 0 1116 1757 63.51736 0.7591 1 720 3 0.4166667 0.2470 0 5 0.6944444 0.5106 0 9 573 1.5706806 0.46880 0 57 573 9.947644 0.7317 0 212 1757 12.066022 0.9549 1 2.45440 0.4888 0 1.70929 0.1025 0 0.7591 0.7527 1 2.91300 0.68620 1 7.83579 0.4802 2
01001020300 01 001 020300 AL Alabama Autauga County 1 South Region 6 East South Central Division 3543 1403 1287 656 3533 18.56779 0.4443 0 93 1552 5.992268 0.3724 0 273 957 28.52665 0.45780 0 178 330 53.93939 0.7152 0 451 1287 35.04274 0.49930 0 346 2260 15.309734 0.5950 0 252 3102 8.123791 0.2596 0 487 13.745413 0.5868 0 998 28.16822 0.7606 1 371 2224 16.68165 0.6266 0 126 913 13.800657 0.46350 0 0 3365 0.0000000 0.09298 0 637 3543 17.979114 0.4049 0 1403 10 0.7127584 0.3015 0 2 0.1425517 0.4407 0 0 1287 0.0000000 0.1238 0 101 1287 7.847708 0.6443 0 0 3543 0 0.364 0 2.17060 0.41010 0 2.53048 0.5116 1 0.4049 0.4011 0 1.8743 0.1942 0 6.98028 0.3576 1 3694 1464 1351 842 3694 22.79372 0.5833 0 53 1994 2.657974 0.22050 0 117 967 12.099276 0.11370 0 147 384 38.28125 0.3856 0 264 1351 19.54108 0.1827 0 317 2477 12.797739 0.6460 0 127 3673 3.457664 0.2308 0 464 12.56091 0.3088 0 929 25.14889 0.7080 0 473 2744 17.23761 0.6211 0 263 975 26.97436 0.8234 1 128 3586 3.5694367 0.70770 0 1331 3694 36.03140 0.5515 0 1464 26 1.7759563 0.3675 0 14 0.9562842 0.5389 0 35 1351 2.5906736 0.60550 0 42 1351 3.108808 0.3415 0 0 3694 0.000000 0.1831 0 1.86330 0.3063 0 3.16900 0.8380 1 0.5515 0.5468 0 2.03650 0.26830 0 7.62030 0.4460 1
01001020400 01 001 020400 AL Alabama Autauga County 1 South Region 6 East South Central Division 4840 1957 1839 501 4840 10.35124 0.2177 0 101 2129 4.744011 0.2447 0 310 1549 20.01291 0.17080 0 89 290 30.68966 0.2044 0 399 1839 21.69657 0.10540 0 274 3280 8.353658 0.3205 0 399 4293 9.294200 0.3171 0 955 19.731405 0.8643 1 1195 24.69008 0.5530 0 625 3328 18.78005 0.7233 0 152 1374 11.062591 0.34710 0 10 4537 0.2204100 0.22560 0 297 4840 6.136364 0.1647 0 1957 33 1.6862545 0.3843 0 25 1.2774655 0.5516 0 14 1839 0.7612833 0.3564 0 19 1839 1.033170 0.1127 0 0 4840 0 0.364 0 1.20540 0.13470 0 2.71330 0.6129 1 0.1647 0.1632 0 1.7690 0.1591 0 5.85240 0.1954 1 3539 1741 1636 503 3539 14.21305 0.3472 0 39 1658 2.352232 0.17990 0 219 1290 16.976744 0.30880 0 74 346 21.38728 0.1037 0 293 1636 17.90954 0.1333 0 173 2775 6.234234 0.3351 0 169 3529 4.788892 0.3448 0 969 27.38062 0.9225 1 510 14.41085 0.1208 0 670 3019 22.19278 0.8194 1 148 1137 13.01671 0.4541 0 89 3409 2.6107363 0.64690 0 454 3539 12.82848 0.2364 0 1741 143 8.2136703 0.6028 0 0 0.0000000 0.2186 0 10 1636 0.6112469 0.28340 0 72 1636 4.400978 0.4538 0 0 3539 0.000000 0.1831 0 1.34030 0.1575 0 2.96370 0.7496 2 0.2364 0.2344 0 1.74170 0.16270 0 6.28210 0.2389 2
01001020500 01 001 020500 AL Alabama Autauga County 1 South Region 6 East South Central Division 9938 3969 3741 1096 9938 11.02838 0.2364 0 188 4937 3.807981 0.1577 0 426 2406 17.70574 0.11050 0 528 1335 39.55056 0.3753 0 954 3741 25.50120 0.20140 0 293 5983 4.897209 0.1655 0 740 10110 7.319486 0.2211 0 837 8.422218 0.2408 0 3012 30.30791 0.8455 1 759 7155 10.60797 0.2668 0 476 2529 18.821669 0.63540 0 78 9297 0.8389803 0.41110 0 1970 9938 19.822902 0.4330 0 3969 306 7.7097506 0.6153 0 0 0.0000000 0.2198 0 7 3741 0.1871157 0.2535 0 223 3741 5.960973 0.5483 0 0 9938 0 0.364 0 0.98210 0.08468 0 2.39960 0.4381 1 0.4330 0.4290 0 2.0009 0.2430 0 5.81560 0.1905 1 10674 4504 4424 1626 10509 15.47245 0.3851 0 81 5048 1.604596 0.09431 0 321 2299 13.962592 0.17970 0 711 2125 33.45882 0.2836 0 1032 4424 23.32731 0.3109 0 531 6816 7.790493 0.4251 0 301 10046 2.996217 0.1894 0 1613 15.11149 0.4553 0 2765 25.90407 0.7494 0 1124 7281 15.43744 0.5253 0 342 2912 11.74451 0.4019 0 52 9920 0.5241935 0.35230 0 2603 10674 24.38636 0.4160 0 4504 703 15.6083481 0.7378 0 29 0.6438721 0.5037 0 37 4424 0.8363472 0.33420 0 207 4424 4.679023 0.4754 0 176 10674 1.648866 0.7598 1 1.40481 0.1743 0 2.48420 0.4802 0 0.4160 0.4125 0 2.81090 0.63730 1 7.11591 0.3654 1
01001020600 01 001 020600 AL Alabama Autauga County 1 South Region 6 East South Central Division 3402 1456 1308 735 3402 21.60494 0.5199 0 134 1720 7.790698 0.5436 0 242 1032 23.44961 0.28010 0 62 276 22.46377 0.1035 0 304 1308 23.24159 0.14070 0 301 2151 13.993491 0.5510 0 355 3445 10.304790 0.3656 0 386 11.346267 0.4232 0 931 27.36626 0.7200 0 440 2439 18.04018 0.6912 0 143 924 15.476190 0.52900 0 4 3254 0.1229256 0.19840 0 723 3402 21.252205 0.4519 0 1456 18 1.2362637 0.3507 0 433 29.7390110 0.9468 1 16 1308 1.2232416 0.4493 0 28 1308 2.140673 0.2298 0 0 3402 0 0.364 0 2.12080 0.39510 0 2.56180 0.5288 0 0.4519 0.4477 0 2.3406 0.4048 1 7.47510 0.4314 1 3536 1464 1330 1279 3523 36.30429 0.8215 1 34 1223 2.780049 0.23780 0 321 1111 28.892889 0.75870 1 67 219 30.59361 0.2305 0 388 1330 29.17293 0.5075 0 306 2380 12.857143 0.6480 0 415 3496 11.870709 0.7535 1 547 15.46946 0.4760 0 982 27.77149 0.8327 1 729 2514 28.99761 0.9488 1 95 880 10.79545 0.3601 0 0 3394 0.0000000 0.09479 0 985 3536 27.85633 0.4608 0 1464 0 0.0000000 0.1079 0 364 24.8633880 0.9300 1 0 1330 0.0000000 0.09796 0 17 1330 1.278196 0.1463 0 0 3536 0.000000 0.1831 0 2.96830 0.6434 2 2.71239 0.6156 2 0.4608 0.4569 0 1.46526 0.08976 1 7.60675 0.4440 5

NMTC Data Wrangling

orig_nmtc_df <- orig_nmtc %>% 
  rename("GEOID10" = "2010 Census Tract Number FIPS code. GEOID",
         "nmtc_eligibility_orig" = "Does Census Tract Qualify For NMTC Low-Income Community (LIC) on Poverty or Income Criteria?")

orig_nmtc_df %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID10 OMB Metro/Non-metro Designation, July 2015 (OMB 15-01) nmtc_eligibility_orig Census Tract Poverty Rate % (2011-2015 ACS) Does Census Tract Qualify on Poverty Criteria\>=20%? Census Tract Percent of Benchmarked Median Family Income (%) 2011-2015 ACS Does Census Tract Qualify on Median Family Income Criteria\<=80%? Census Tract Unemployment Rate (%) 2011-2015 County Code State Abbreviation State Name County Name Census Tract Unemployment to National Unemployment Ratio Is Tract Unemployment to National Unemployment Ratio \>1.5? Population for whom poverty status is determined 2011-2015 ACS
01001020100 Metropolitan No 8.1 No 122.930646878856 No 5.4 01001 AL Alabama Autauga 0.6506024096385542 No 1948
01001020200 Metropolitan Yes 25.5 Yes 82.402258244451573 No 13.3 01001 AL Alabama Autauga 1.6024096385542168 Yes 1983
01001020300 Metropolitan No 12.7 No 94.261422220719723 No 6.2 01001 AL Alabama Autauga 0.74698795180722888 No 2968
01001020400 Metropolitan No 2.1 No 116.82358310373388 No 10.8 01001 AL Alabama Autauga 1.3012048192771084 No 4423
01001020500 Metropolitan No 11.4 No 127.74293876033198 No 4.2 01001 AL Alabama Autauga 0.50602409638554213 No 10563
01001020600 Metropolitan No 14.4 No 111.98255607579317 No 10.9 01001 AL Alabama Autauga 1.3132530120481927 No 3851
high_migration_nmtc_df <- high_migration_nmtc %>% rename("GEOID10" = "2010 Census Tract Number FIPS code GEOID")

high_migration_nmtc_df %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID10 20-year County population loss 1990-2010 census % Median Family Income (MFI) / Area Income 2011-2015 (between 80%-85% MFI)
01087231601 -0.1394416 82.06754
05039970300 -0.1558144 84.78236
08017960600 -0.2340426 84.36239
17067953800 -0.1061620 80.36788
17067954200 -0.1061620 84.48551
17067954300 -0.1061620 84.44497
# Add column to label tracts as high migration
high_migration_nmtc_df <- high_migration_nmtc_df %>% mutate(high_migration = "Yes")

# Join to original column
orig_nmtc_df <- left_join(orig_nmtc_df, high_migration_nmtc_df, join_by(GEOID10 == GEOID10))

# Update eligibility column with coalesce()
nmtc_df <- orig_nmtc_df %>% 
  mutate(nmtc_eligibility = coalesce(high_migration, nmtc_eligibility_orig))

nmtc_df %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID10 OMB Metro/Non-metro Designation, July 2015 (OMB 15-01) nmtc_eligibility_orig Census Tract Poverty Rate % (2011-2015 ACS) Does Census Tract Qualify on Poverty Criteria\>=20%? Census Tract Percent of Benchmarked Median Family Income (%) 2011-2015 ACS Does Census Tract Qualify on Median Family Income Criteria\<=80%? Census Tract Unemployment Rate (%) 2011-2015 County Code State Abbreviation State Name County Name Census Tract Unemployment to National Unemployment Ratio Is Tract Unemployment to National Unemployment Ratio \>1.5? Population for whom poverty status is determined 2011-2015 ACS 20-year County population loss 1990-2010 census % Median Family Income (MFI) / Area Income 2011-2015 (between 80%-85% MFI) high_migration nmtc_eligibility
01001020100 Metropolitan No 8.1 No 122.930646878856 No 5.4 01001 AL Alabama Autauga 0.6506024096385542 No 1948 NA NA NA No
01001020200 Metropolitan Yes 25.5 Yes 82.402258244451573 No 13.3 01001 AL Alabama Autauga 1.6024096385542168 Yes 1983 NA NA NA Yes
01001020300 Metropolitan No 12.7 No 94.261422220719723 No 6.2 01001 AL Alabama Autauga 0.74698795180722888 No 2968 NA NA NA No
01001020400 Metropolitan No 2.1 No 116.82358310373388 No 10.8 01001 AL Alabama Autauga 1.3012048192771084 No 4423 NA NA NA No
01001020500 Metropolitan No 11.4 No 127.74293876033198 No 4.2 01001 AL Alabama Autauga 0.50602409638554213 No 10563 NA NA NA No
01001020600 Metropolitan No 14.4 No 111.98255607579317 No 10.9 01001 AL Alabama Autauga 1.3132530120481927 No 3851 NA NA NA No
nmtc_eligible <- nmtc_df %>% 
  select(GEOID10, nmtc_eligibility, `County Code`, `County Name`, `State Abbreviation`, `State Name`) %>% 
  filter(tolower(nmtc_eligibility) == "yes")

nmtc_eligible %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID10 nmtc_eligibility County Code County Name State Abbreviation State Name
01001020200 Yes 01001 Autauga AL Alabama
01001020700 Yes 01001 Autauga AL Alabama
01001021100 Yes 01001 Autauga AL Alabama
01003010200 Yes 01003 Baldwin AL Alabama
01003010500 Yes 01003 Baldwin AL Alabama
01003010600 Yes 01003 Baldwin AL Alabama
# Save just tract ID and eligibility
nmtc_eligible_df <- nmtc_eligible %>% select(GEOID10, nmtc_eligibility)
nmtc_eligible_df %>% head()
## # A tibble: 6 × 2
##   GEOID10     nmtc_eligibility
##   <chr>       <chr>           
## 1 01001020200 Yes             
## 2 01001020700 Yes             
## 3 01001021100 Yes             
## 4 01003010200 Yes             
## 5 01003010500 Yes             
## 6 01003010600 Yes
nmtc_awards_data %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
Project ID 2010 Census Tract Metro/Non-Metro, 2010 Census Origination Year Community Development Entity (CDE) Name Project QLICI Amount Estimated Total Project Cost City State Zip Code QALICB Type Multi-CDE Multi-Tract Project
AK0001 2070000100 Non-Metropolitan 2008 Alaska Growth Capital BIDCO, Inc.  300000 300000 Aleknagik Alaska 99555 NRE NO NO
AK0002 2020001000 Metropolitan 2006 Alaska Growth Capital BIDCO, Inc.  1008750 1345000 Anchorage Alaska 99501 NRE NO NO
AK0003 2020000600 Metropolitan 2006 HEDC New Markets, Inc 5061506 8694457 Anchorage Alaska 99508 NRE NO NO
AK0004 2020001000 Metropolitan 2006 Alaska Growth Capital BIDCO, Inc.  187500 250000 Anchorage Alaska 99501 NRE NO NO
AK0006 2020001802 Metropolitan 2006 Alaska Growth Capital BIDCO, Inc.  750000 1180000 Anchorage Alaska 99507 NRE NO NO
AK0007 2020001900 Metropolitan 2006 Alaska Growth Capital BIDCO, Inc.  127500 150000 Anchorage Alaska 99503 NRE NO NO
nmtc_awards <- nmtc_awards_data %>% 
  mutate(`2010 Census Tract` = str_pad(`2010 Census Tract`, 11, "left", pad=0)) %>%
  rename("GEOID10" =`2010 Census Tract`)

nmtc_awards %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
Project ID GEOID10 Metro/Non-Metro, 2010 Census Origination Year Community Development Entity (CDE) Name Project QLICI Amount Estimated Total Project Cost City State Zip Code QALICB Type Multi-CDE Multi-Tract Project
AK0001 02070000100 Non-Metropolitan 2008 Alaska Growth Capital BIDCO, Inc.  300000 300000 Aleknagik Alaska 99555 NRE NO NO
AK0002 02020001000 Metropolitan 2006 Alaska Growth Capital BIDCO, Inc.  1008750 1345000 Anchorage Alaska 99501 NRE NO NO
AK0003 02020000600 Metropolitan 2006 HEDC New Markets, Inc 5061506 8694457 Anchorage Alaska 99508 NRE NO NO
AK0004 02020001000 Metropolitan 2006 Alaska Growth Capital BIDCO, Inc.  187500 250000 Anchorage Alaska 99501 NRE NO NO
AK0006 02020001802 Metropolitan 2006 Alaska Growth Capital BIDCO, Inc.  750000 1180000 Anchorage Alaska 99507 NRE NO NO
AK0007 02020001900 Metropolitan 2006 Alaska Growth Capital BIDCO, Inc.  127500 150000 Anchorage Alaska 99503 NRE NO NO
# Create character zip_code column:
nmtc_awards <- nmtc_awards %>% 
  mutate(zip_code = str_pad(`Zip Code`, 5, "left", pad=0))

nmtc_awards %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
Project ID GEOID10 Metro/Non-Metro, 2010 Census Origination Year Community Development Entity (CDE) Name Project QLICI Amount Estimated Total Project Cost City State Zip Code QALICB Type Multi-CDE Multi-Tract Project zip_code
AK0001 02070000100 Non-Metropolitan 2008 Alaska Growth Capital BIDCO, Inc.  300000 300000 Aleknagik Alaska 99555 NRE NO NO 99555
AK0002 02020001000 Metropolitan 2006 Alaska Growth Capital BIDCO, Inc.  1008750 1345000 Anchorage Alaska 99501 NRE NO NO 99501
AK0003 02020000600 Metropolitan 2006 HEDC New Markets, Inc 5061506 8694457 Anchorage Alaska 99508 NRE NO NO 99508
AK0004 02020001000 Metropolitan 2006 Alaska Growth Capital BIDCO, Inc.  187500 250000 Anchorage Alaska 99501 NRE NO NO 99501
AK0006 02020001802 Metropolitan 2006 Alaska Growth Capital BIDCO, Inc.  750000 1180000 Anchorage Alaska 99507 NRE NO NO 99507
AK0007 02020001900 Metropolitan 2006 Alaska Growth Capital BIDCO, Inc.  127500 150000 Anchorage Alaska 99503 NRE NO NO 99503
# View tracts
nmtc_awards_pre2010 <- nmtc_awards %>% 
  filter(`Origination Year` <= 2010) %>% 
  count(GEOID10) %>% 
  rename("pre10_nmtc_project_cnt" = "n")

nmtc_awards_dollars_pre2010 <- nmtc_awards %>% 
  filter(`Origination Year` <= 2010) %>% 
  group_by(GEOID10) %>% 
  summarise(pre10_nmtc_dollars = sum(`Project QLICI Amount`, na.rm = TRUE))

nmtc_awards_pre2010 <- left_join(nmtc_awards_pre2010, 
                                 nmtc_awards_dollars_pre2010, 
                                 join_by(GEOID10 == GEOID10))

nmtc_awards_pre2010$pre10_nmtc_dollars_formatted <- scales::dollar_format()(nmtc_awards_pre2010$pre10_nmtc_dollars)

nmtc_awards_pre2010 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID10 pre10_nmtc_project_cnt pre10_nmtc_dollars pre10_nmtc_dollars_formatted
01059973500 1 5000000 \$5,000,000
01069041400 1 2500000 \$2,500,000
01073001902 1 14400000 \$14,400,000
01073002700 1 1000000 \$1,000,000
01073004200 1 5908129 \$5,908,129
01073004500 3 37950000 \$37,950,000
nmtc_awards_post2010 <- nmtc_awards %>% 
  filter(`Origination Year` > 2010 & `Origination Year` <= 2020) %>% 
  count(GEOID10) %>% 
  rename("post10_nmtc_project_cnt" = "n")

nmtc_awards_dollars_post2010 <- nmtc_awards %>% 
  filter(`Origination Year` > 2010 & `Origination Year` <= 2020) %>% 
  group_by(GEOID10) %>% 
  summarise(post10_nmtc_dollars = sum(`Project QLICI Amount`, na.rm = TRUE))

nmtc_awards_post2010 <- left_join(nmtc_awards_post2010, 
                                  nmtc_awards_dollars_post2010, 
                                  join_by(GEOID10 == GEOID10))

nmtc_awards_post2010$post10_nmtc_dollars_formatted <- scales::dollar_format()(nmtc_awards_post2010$post10_nmtc_dollars)

nmtc_awards_post2010 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID10 post10_nmtc_project_cnt post10_nmtc_dollars post10_nmtc_dollars_formatted
0. 3 24200000 \$24,200,000
01003010200 1 408000 \$408,000
01003010300 1 9880000 \$9,880,000
01003010600 1 8000000 \$8,000,000
01003010904 1 22460000 \$22,460,000
01003011501 6 37147460 \$37,147,460
# Divisional data
svi_divisional_nmtc_eligible <- left_join(svi_divisional, nmtc_eligible_df, join_by("GEOID_2010_trt" == "GEOID10")) %>% filter(tolower(nmtc_eligibility) == "yes")

svi_divisional_nmtc_eligible %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 nmtc_eligibility
34001000100 34 001 000100 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2907 1088 983 1127 2907 38.76849 0.8482 1 144 1433 10.048849 0.7544 1 280 435 64.36782 0.9529 1 204 548 37.22628 0.2998 0 484 983 49.23703 0.7813 1 468 1759 26.60603 0.8634 1 532 2543 20.92017 0.8978 1 250 8.599931 0.1777 0 944 32.47334 0.94170 1 186 1851 10.04862 0.2706 0 266 678 39.233038 0.8981 1 177 2611 6.779012 0.7778 1 1928 2907 66.32267 0.7743 1 1088 113 10.386029 0.6229 0 9 0.8272059 0.7223 0 80 983 8.138352 0.8657 1 265 983 26.95829 0.7354 0 0 2907 0.000000 0.3512 0 4.1451 0.8935 5 3.06590 0.7944 3 0.7743 0.7667 1 3.2975 0.8414 1 11.28280 0.8862 10 2157 941 784 1182 2157 54.79833 0.9571 1 242 1058 22.873346 0.9922 1 215 342 62.86550 0.9780 1 316 442 71.49321 0.9481 1 531 784 67.72959 0.9893 1 396 1274 31.08320 0.9497 1 266 2157 12.331943 0.9041 1 185 8.576727 0.09430 0 552 25.59110 0.8128 1 297 1605 18.504673 0.74880 0 83 510 16.27451 0.6090 0 251 2020 12.425743 0.8710 1 1852 2157 85.85999 0.8476 1 941 118 12.5398512 0.6385 0 0 0.0000000 0.3216 0 67 784 8.545918 0.8657 1 212 784 27.04082 0.7502 1 0 2157 0.0000000 0.1517 0 4.7924 0.9850 5 3.13590 0.8217 2 0.8476 0.8400 1 2.7277 0.6085 2 11.50360 0.9104 10 Yes
34001000200 34 001 000200 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3189 2217 1473 519 3189 16.27469 0.4806 0 109 1558 6.996149 0.5179 0 573 955 60.00000 0.9323 1 199 518 38.41699 0.3261 0 772 1473 52.41005 0.8418 1 405 2579 15.70376 0.6491 0 484 3547 13.64533 0.7154 0 847 26.560050 0.9629 1 436 13.67200 0.08181 0 608 3005 20.23295 0.8466 1 42 857 4.900817 0.1204 0 422 3072 13.736979 0.8799 1 1792 3189 56.19316 0.7390 0 2217 901 40.640505 0.8693 1 0 0.0000000 0.3251 0 48 1473 3.258656 0.7064 0 250 1473 16.97217 0.6444 0 0 3189 0.000000 0.3512 0 3.2048 0.6963 1 2.89161 0.7231 3 0.7390 0.7317 0 2.8964 0.6887 1 9.73181 0.7340 5 3510 2046 1353 1021 3510 29.08832 0.7682 1 121 1852 6.533477 0.6717 0 343 696 49.28161 0.9273 1 416 657 63.31811 0.8696 1 759 1353 56.09756 0.9321 1 553 2338 23.65269 0.8871 1 354 3510 10.085470 0.8530 1 643 18.319088 0.60310 0 1002 28.54701 0.9055 1 450 2508 17.942584 0.72330 0 237 786 30.15267 0.8539 1 534 3375 15.822222 0.9062 1 2534 3510 72.19373 0.7818 1 2046 906 44.2815249 0.8690 1 0 0.0000000 0.3216 0 119 1353 8.795270 0.8711 1 324 1353 23.94678 0.7255 0 0 3510 0.0000000 0.1517 0 4.1121 0.9003 4 3.99200 0.9781 3 0.7818 0.7747 1 2.9389 0.7011 2 11.82480 0.9310 10 Yes
34001000300 34 001 000300 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3997 1823 1357 1401 3968 35.30746 0.8164 1 382 2238 17.068811 0.9376 1 176 329 53.49544 0.8855 1 604 1028 58.75486 0.7947 1 780 1357 57.47973 0.9165 1 920 2677 34.36683 0.9346 1 1351 4149 32.56206 0.9811 1 314 7.855892 0.1437 0 937 23.44258 0.55900 0 319 3054 10.44532 0.3000 0 187 782 23.913044 0.7498 0 1080 3671 29.419777 0.9742 1 3357 3997 83.98799 0.8419 1 1823 363 19.912233 0.7535 1 0 0.0000000 0.3251 0 150 1357 11.053795 0.9136 1 651 1357 47.97347 0.8585 1 0 3997 0.000000 0.3512 0 4.5862 0.9691 5 2.72670 0.6360 1 0.8419 0.8336 1 3.2019 0.8054 3 11.35670 0.8920 10 3801 1640 1226 1857 3801 48.85556 0.9333 1 226 1800 12.555556 0.9267 1 111 280 39.64286 0.8339 1 608 946 64.27061 0.8842 1 719 1226 58.64600 0.9528 1 650 2275 28.57143 0.9337 1 1027 3801 27.019206 0.9914 1 380 9.997369 0.14040 0 1223 32.17574 0.9607 1 219 2578 8.494957 0.15680 0 268 909 29.48295 0.8456 1 940 3400 27.647059 0.9728 1 3318 3801 87.29282 0.8579 1 1640 262 15.9756098 0.6917 0 0 0.0000000 0.3216 0 124 1226 10.114192 0.8955 1 477 1226 38.90701 0.8258 1 0 3801 0.0000000 0.1517 0 4.7379 0.9829 5 3.07630 0.8013 3 0.8579 0.8501 1 2.8863 0.6781 2 11.55840 0.9150 11 Yes
34001000400 34 001 000400 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2902 2683 1401 1172 2902 40.38594 0.8615 1 190 1389 13.678906 0.8811 1 364 707 51.48515 0.8627 1 507 694 73.05476 0.9503 1 871 1401 62.16988 0.9572 1 481 1981 24.28067 0.8339 1 674 3204 21.03620 0.8998 1 434 14.955203 0.6083 0 596 20.53756 0.33980 0 426 2607 16.34062 0.6886 0 111 652 17.024540 0.6204 0 215 2736 7.858187 0.8008 1 1792 2902 61.75052 0.7584 1 2683 2049 76.369735 0.9401 1 0 0.0000000 0.3251 0 69 1401 4.925053 0.7847 1 511 1401 36.47395 0.7992 1 72 2902 2.481048 0.8114 1 4.4335 0.9468 5 3.05790 0.7908 1 0.7584 0.7510 1 3.6605 0.9391 4 11.91030 0.9339 11 3178 2264 1390 1508 3176 47.48111 0.9246 1 172 1804 9.534368 0.8460 1 205 468 43.80342 0.8858 1 622 922 67.46204 0.9192 1 827 1390 59.49640 0.9587 1 364 2076 17.53372 0.8013 1 476 3178 14.977974 0.9390 1 483 15.198238 0.41220 0 539 16.96035 0.2484 0 319 2639 12.087912 0.38790 0 101 565 17.87611 0.6539 0 583 3022 19.291860 0.9349 1 2186 3178 68.78540 0.7658 1 2264 1609 71.0689046 0.9266 1 15 0.6625442 0.7078 0 226 1390 16.258993 0.9567 1 599 1390 43.09353 0.8474 1 20 3178 0.6293266 0.6292 0 4.4696 0.9558 5 2.63730 0.5864 1 0.7658 0.7588 1 4.0677 0.9762 3 11.94040 0.9387 10 Yes
34001000500 34 001 000500 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3483 1241 1027 1938 3483 55.64169 0.9533 1 124 1630 7.607362 0.5830 0 227 446 50.89686 0.8549 1 478 581 82.27194 0.9799 1 705 1027 68.64654 0.9863 1 733 2077 35.29129 0.9396 1 727 3258 22.31430 0.9149 1 377 10.824002 0.3081 0 1055 30.28998 0.90140 1 268 2401 11.16202 0.3549 0 209 763 27.391874 0.7940 1 911 3077 29.606760 0.9746 1 3036 3483 87.16624 0.8550 1 1241 52 4.190169 0.4505 0 4 0.3223207 0.6567 0 113 1027 11.002921 0.9128 1 422 1027 41.09056 0.8250 1 0 3483 0.000000 0.3512 0 4.3771 0.9379 4 3.33300 0.8766 3 0.8550 0.8467 1 3.1962 0.8026 2 11.76130 0.9229 10 3385 1185 945 1682 3364 50.00000 0.9391 1 72 1577 4.565631 0.4586 0 185 468 39.52991 0.8332 1 362 477 75.89099 0.9703 1 547 945 57.88360 0.9477 1 592 1983 29.85376 0.9422 1 738 3385 21.802068 0.9817 1 240 7.090103 0.05988 0 1129 33.35303 0.9689 1 135 2256 5.984043 0.04817 0 110 717 15.34170 0.5822 0 721 3076 23.439532 0.9569 1 3029 3385 89.48301 0.8727 1 1185 9 0.7594937 0.2382 0 0 0.0000000 0.3216 0 103 945 10.899471 0.9072 1 263 945 27.83069 0.7560 1 0 3385 0.0000000 0.1517 0 4.2693 0.9283 4 2.61605 0.5709 2 0.8727 0.8648 1 2.3747 0.4357 2 10.13275 0.7921 9 Yes
34001001100 34 001 001100 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2204 1204 1204 1185 2204 53.76588 0.9457 1 219 927 23.624596 0.9830 1 97 172 56.39535 0.9094 1 462 1032 44.76744 0.4746 0 559 1204 46.42857 0.7197 0 346 1440 24.02778 0.8306 1 469 1942 24.15036 0.9360 1 363 16.470054 0.7020 0 578 26.22505 0.74410 0 442 1558 28.36970 0.9675 1 247 396 62.373737 0.9898 1 104 2051 5.070697 0.7260 0 2118 2204 96.09800 0.9204 1 1204 570 47.342193 0.8858 1 0 0.0000000 0.3251 0 14 1204 1.162791 0.4877 0 817 1204 67.85714 0.9413 1 0 2204 0.000000 0.3512 0 4.4150 0.9451 4 4.12940 0.9805 2 0.9204 0.9114 1 2.9911 0.7243 2 12.45590 0.9597 9 1950 1267 1096 1131 1950 58.00000 0.9678 1 66 706 9.348442 0.8395 1 42 101 41.58416 0.8612 1 309 995 31.05528 0.1959 0 351 1096 32.02555 0.4782 0 510 1379 36.98332 0.9763 1 155 1950 7.948718 0.7660 1 392 20.102564 0.69880 0 447 22.92308 0.6712 0 570 1503 37.924152 0.99200 1 143 374 38.23529 0.9167 1 109 1841 5.920695 0.7464 0 1909 1950 97.89744 0.9529 1 1267 479 37.8058406 0.8464 1 0 0.0000000 0.3216 0 33 1096 3.010949 0.6446 0 743 1096 67.79197 0.9414 1 0 1950 0.0000000 0.1517 0 4.0278 0.8848 4 4.02510 0.9798 2 0.9529 0.9442 1 2.9057 0.6869 2 11.91150 0.9365 9 Yes
# National data
svi_national_nmtc_eligible <- left_join(svi_national, nmtc_eligible_df, join_by("GEOID_2010_trt" == "GEOID10")) %>% filter(tolower(nmtc_eligibility) == "yes")

svi_national_nmtc_eligible %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 nmtc_eligibility
01001020200 01 001 020200 AL Alabama Autauga County 1 South Region 6 East South Central Division 2020 816 730 495 1992 24.84940 0.5954 0 68 834 8.153477 0.57540 0 49 439 11.16173 0.02067 0 105 291 36.08247 0.30190 0 154 730 21.09589 0.09312 0 339 1265 26.79842 0.8392 1 313 2012 15.55666 0.6000 0 204 10.09901 0.3419 0 597 29.55446 0.8192 1 359 1515 23.69637 0.8791 1 132 456 28.947368 0.8351 1 15 1890 0.7936508 0.40130 0 1243 2020 61.53465 0.7781 1 816 0 0.0000000 0.1224 0 34 4.1666667 0.6664 0 13 730 1.780822 0.5406 0 115 730 15.753425 0.8382 1 0 2020 0.0000 0.3640 0 2.70312 0.5665 1 3.27660 0.8614 3 0.7781 0.7709 1 2.5316 0.5047 1 9.28942 0.6832 6 1757 720 573 384 1511 25.41363 0.6427 0 29 717 4.044630 0.4132 0 33 392 8.418367 0.03542 0 116 181 64.08840 0.9086 1 149 573 26.00349 0.40410 0 139 1313 10.58644 0.5601 0 91 1533 5.936073 0.4343 0 284 16.163916 0.5169 0 325 18.49744 0.2851 0 164 1208.000 13.57616 0.4127 0 42 359.0000 11.699164 0.3998 0 0 1651 0.0000000 0.09479 0 1116 1757.000 63.51736 0.7591 1 720 3 0.4166667 0.2470 0 5 0.6944444 0.5106 0 9 573 1.5706806 0.4688 0 57 573.000 9.947644 0.7317 0 212 1757 12.0660216 0.9549 1 2.45440 0.4888 0 1.70929 0.1025 0 0.7591 0.7527 1 2.9130 0.6862 1 7.83579 0.4802 2 Yes
01001020700 01 001 020700 AL Alabama Autauga County 1 South Region 6 East South Central Division 2664 1254 1139 710 2664 26.65165 0.6328 0 29 1310 2.213741 0.05255 0 134 710 18.87324 0.13890 0 187 429 43.58974 0.47090 0 321 1139 28.18262 0.28130 0 396 1852 21.38229 0.7478 0 345 2878 11.98749 0.4459 0 389 14.60210 0.6417 0 599 22.48499 0.4007 0 510 2168 23.52399 0.8752 1 228 712 32.022472 0.8712 1 0 2480 0.0000000 0.09298 0 694 2664 26.05105 0.5138 0 1254 8 0.6379585 0.2931 0 460 36.6826156 0.9714 1 0 1139 0.000000 0.1238 0 125 1139 10.974539 0.7477 0 0 2664 0.0000 0.3640 0 2.16035 0.4069 0 2.88178 0.6997 2 0.5138 0.5090 0 2.5000 0.4882 1 8.05593 0.5185 3 3562 1313 1248 1370 3528 38.83220 0.8512 1 128 1562 8.194622 0.7935 1 168 844 19.905213 0.44510 0 237 404 58.66337 0.8359 1 405 1248 32.45192 0.60420 0 396 2211 17.91045 0.7857 1 444 3547 12.517620 0.7758 1 355 9.966311 0.1800 0 954 26.78271 0.7923 1 629 2593.000 24.25762 0.8730 1 171 797.0000 21.455458 0.7186 0 0 3211 0.0000000 0.09479 0 1009 3562.000 28.32678 0.4668 0 1313 14 1.0662605 0.3165 0 443 33.7395278 0.9663 1 73 1248 5.8493590 0.8211 1 17 1248.000 1.362180 0.1554 0 112 3562 3.1443010 0.8514 1 3.81040 0.8569 4 2.65869 0.5847 2 0.4668 0.4629 0 3.1107 0.7714 3 10.04659 0.7851 9 Yes
01001021100 01 001 021100 AL Alabama Autauga County 1 South Region 6 East South Central Division 3298 1502 1323 860 3298 26.07641 0.6211 0 297 1605 18.504673 0.94340 1 250 1016 24.60630 0.32070 0 74 307 24.10423 0.11920 0 324 1323 24.48980 0.17380 0 710 2231 31.82429 0.8976 1 654 3565 18.34502 0.7018 0 411 12.46210 0.5001 0 738 22.37720 0.3934 0 936 2861 32.71583 0.9807 1 138 825 16.727273 0.5715 0 9 3155 0.2852615 0.25010 0 1979 3298 60.00606 0.7703 1 1502 14 0.9320905 0.3234 0 659 43.8748336 0.9849 1 44 1323 3.325775 0.7062 0 137 1323 10.355253 0.7313 0 0 3298 0.0000 0.3640 0 3.33770 0.7351 2 2.69580 0.6028 1 0.7703 0.7631 1 3.1098 0.7827 1 9.91360 0.7557 5 3499 1825 1462 1760 3499 50.30009 0.9396 1 42 966 4.347826 0.4539 0 426 1274 33.437991 0.85200 1 52 188 27.65957 0.1824 0 478 1462 32.69494 0.61110 0 422 2488 16.96141 0.7638 1 497 3499 14.204058 0.8246 1 853 24.378394 0.8688 1 808 23.09231 0.5829 0 908 2691.100 33.74084 0.9808 1 179 811.6985 22.052524 0.7323 0 8 3248 0.2463054 0.26220 0 1986 3498.713 56.76373 0.7175 0 1825 29 1.5890411 0.3551 0 576 31.5616438 0.9594 1 88 1462 6.0191518 0.8269 1 148 1461.993 10.123166 0.7364 0 38 3499 1.0860246 0.7013 0 3.59300 0.8073 3 3.42700 0.9156 2 0.7175 0.7114 0 3.5791 0.9216 2 11.31660 0.9150 7 Yes
01003010200 01 003 010200 AL Alabama Baldwin County 1 South Region 6 East South Central Division 2612 1220 1074 338 2605 12.97505 0.2907 0 44 1193 3.688181 0.14720 0 172 928 18.53448 0.13090 0 31 146 21.23288 0.09299 0 203 1074 18.90130 0.05657 0 455 1872 24.30556 0.8016 1 456 2730 16.70330 0.6445 0 401 15.35222 0.6847 0 563 21.55436 0.3406 0 410 2038 20.11776 0.7755 1 64 779 8.215661 0.2181 0 0 2510 0.0000000 0.09298 0 329 2612 12.59571 0.3113 0 1220 38 3.1147541 0.4648 0 385 31.5573770 0.9545 1 20 1074 1.862197 0.5509 0 43 1074 4.003724 0.4088 0 0 2612 0.0000 0.3640 0 1.94057 0.3398 1 2.11188 0.2802 1 0.3113 0.3084 0 2.7430 0.6129 1 7.10675 0.3771 3 2928 1312 1176 884 2928 30.19126 0.7334 0 29 1459 1.987663 0.1356 0 71 830 8.554217 0.03726 0 134 346 38.72832 0.3964 0 205 1176 17.43197 0.12010 0 294 2052 14.32749 0.6940 0 219 2925 7.487179 0.5423 0 556 18.989071 0.6705 0 699 23.87295 0.6339 0 489 2226.455 21.96317 0.8122 1 191 783.8820 24.365914 0.7799 1 0 2710 0.0000000 0.09479 0 398 2927.519 13.59513 0.2511 0 1312 13 0.9908537 0.3111 0 400 30.4878049 0.9557 1 6 1176 0.5102041 0.2590 0 81 1176.202 6.886570 0.6115 0 7 2928 0.2390710 0.4961 0 2.22540 0.4183 0 2.99129 0.7634 2 0.2511 0.2490 0 2.6334 0.5496 1 8.10119 0.5207 3 Yes
01003010500 01 003 010500 AL Alabama Baldwin County 1 South Region 6 East South Central Division 4230 1779 1425 498 3443 14.46413 0.3337 0 166 1625 10.215385 0.71790 0 151 1069 14.12535 0.04638 0 196 356 55.05618 0.73830 0 347 1425 24.35088 0.17010 0 707 2945 24.00679 0.7967 1 528 4001 13.19670 0.5005 0 619 14.63357 0.6436 0 790 18.67612 0.1937 0 536 3096 17.31266 0.6572 0 165 920 17.934783 0.6102 0 20 4021 0.4973887 0.32320 0 754 4230 17.82506 0.4023 0 1779 97 5.4525014 0.5525 0 8 0.4496908 0.4600 0 63 1425 4.421053 0.7762 1 90 1425 6.315790 0.5691 0 787 4230 18.6052 0.9649 1 2.51890 0.5121 1 2.42790 0.4539 0 0.4023 0.3986 0 3.3227 0.8628 2 8.67180 0.6054 3 5877 1975 1836 820 5244 15.63692 0.3902 0 90 2583 3.484321 0.3361 0 159 1345 11.821561 0.10530 0 139 491 28.30957 0.1924 0 298 1836 16.23094 0.09053 0 570 4248 13.41808 0.6669 0 353 5247 6.727654 0.4924 0 1109 18.870172 0.6645 0 1144 19.46571 0.3411 0 717 4102.545 17.47696 0.6332 0 103 1286.1180 8.008596 0.2341 0 0 5639 0.0000000 0.09479 0 868 5877.481 14.76823 0.2709 0 1975 26 1.3164557 0.3359 0 45 2.2784810 0.6271 0 9 1836 0.4901961 0.2540 0 116 1835.798 6.318779 0.5811 0 633 5877 10.7708014 0.9507 1 1.97613 0.3410 0 1.96769 0.1961 0 0.2709 0.2686 0 2.7488 0.6077 1 6.96352 0.3406 1 Yes
01003010600 01 003 010600 AL Alabama Baldwin County 1 South Region 6 East South Central Division 3724 1440 1147 1973 3724 52.98067 0.9342 1 142 1439 9.867964 0.69680 0 235 688 34.15698 0.62950 0 187 459 40.74074 0.40290 0 422 1147 36.79163 0.55150 0 497 1876 26.49254 0.8354 1 511 3661 13.95794 0.5334 0 246 6.60580 0.1481 0 1256 33.72718 0.9305 1 496 2522 19.66693 0.7587 1 274 838 32.696897 0.8779 1 32 3479 0.9198045 0.42810 0 2606 3724 69.97852 0.8184 1 1440 21 1.4583333 0.3683 0 321 22.2916667 0.9036 1 97 1147 8.456844 0.8956 1 167 1147 14.559721 0.8209 1 0 3724 0.0000 0.3640 0 3.55130 0.7859 2 3.14330 0.8145 3 0.8184 0.8108 1 3.3524 0.8725 3 10.86540 0.8550 9 4115 1534 1268 1676 3997 41.93145 0.8814 1 294 1809 16.252073 0.9674 1 341 814 41.891892 0.94320 1 204 454 44.93392 0.5438 0 545 1268 42.98107 0.83620 1 624 2425 25.73196 0.9002 1 994 4115 24.155529 0.9602 1 642 15.601458 0.4841 0 1126 27.36331 0.8175 1 568 2989.000 19.00301 0.7045 0 212 715.0000 29.650350 0.8592 1 56 3825 1.4640523 0.53120 0 2715 4115.000 65.97813 0.7732 1 1534 0 0.0000000 0.1079 0 529 34.4850065 0.9685 1 101 1268 7.9652997 0.8795 1 89 1268.000 7.018927 0.6184 0 17 4115 0.4131227 0.5707 0 4.54540 0.9754 5 3.39650 0.9081 2 0.7732 0.7667 1 3.1450 0.7858 2 11.86010 0.9520 10 Yes
# Join divisional data to nmtc_awards_pre2010, set count to 0 if no data
svi_divisional_nmtc_eligible <- 
  left_join(svi_divisional_nmtc_eligible, nmtc_awards_pre2010, join_by("GEOID_2010_trt" == "GEOID10")) %>%
  mutate(pre10_nmtc_project_cnt = if_else(is.na(pre10_nmtc_project_cnt), 0, pre10_nmtc_project_cnt)) %>%
    mutate(pre10_nmtc_dollars = if_else(is.na(pre10_nmtc_dollars), 0, pre10_nmtc_dollars)) %>%
    mutate(pre10_nmtc_dollars_formatted = if_else(is.na(pre10_nmtc_dollars_formatted), "$0", pre10_nmtc_dollars_formatted))

# View table
svi_divisional_nmtc_eligible %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 nmtc_eligibility pre10_nmtc_project_cnt pre10_nmtc_dollars pre10_nmtc_dollars_formatted
34001000100 34 001 000100 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2907 1088 983 1127 2907 38.76849 0.8482 1 144 1433 10.048849 0.7544 1 280 435 64.36782 0.9529 1 204 548 37.22628 0.2998 0 484 983 49.23703 0.7813 1 468 1759 26.60603 0.8634 1 532 2543 20.92017 0.8978 1 250 8.599931 0.1777 0 944 32.47334 0.94170 1 186 1851 10.04862 0.2706 0 266 678 39.233038 0.8981 1 177 2611 6.779012 0.7778 1 1928 2907 66.32267 0.7743 1 1088 113 10.386029 0.6229 0 9 0.8272059 0.7223 0 80 983 8.138352 0.8657 1 265 983 26.95829 0.7354 0 0 2907 0.000000 0.3512 0 4.1451 0.8935 5 3.06590 0.7944 3 0.7743 0.7667 1 3.2975 0.8414 1 11.28280 0.8862 10 2157 941 784 1182 2157 54.79833 0.9571 1 242 1058 22.873346 0.9922 1 215 342 62.86550 0.9780 1 316 442 71.49321 0.9481 1 531 784 67.72959 0.9893 1 396 1274 31.08320 0.9497 1 266 2157 12.331943 0.9041 1 185 8.576727 0.09430 0 552 25.59110 0.8128 1 297 1605 18.504673 0.74880 0 83 510 16.27451 0.6090 0 251 2020 12.425743 0.8710 1 1852 2157 85.85999 0.8476 1 941 118 12.5398512 0.6385 0 0 0.0000000 0.3216 0 67 784 8.545918 0.8657 1 212 784 27.04082 0.7502 1 0 2157 0.0000000 0.1517 0 4.7924 0.9850 5 3.13590 0.8217 2 0.8476 0.8400 1 2.7277 0.6085 2 11.50360 0.9104 10 Yes 0 0 \$0
34001000200 34 001 000200 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3189 2217 1473 519 3189 16.27469 0.4806 0 109 1558 6.996149 0.5179 0 573 955 60.00000 0.9323 1 199 518 38.41699 0.3261 0 772 1473 52.41005 0.8418 1 405 2579 15.70376 0.6491 0 484 3547 13.64533 0.7154 0 847 26.560050 0.9629 1 436 13.67200 0.08181 0 608 3005 20.23295 0.8466 1 42 857 4.900817 0.1204 0 422 3072 13.736979 0.8799 1 1792 3189 56.19316 0.7390 0 2217 901 40.640505 0.8693 1 0 0.0000000 0.3251 0 48 1473 3.258656 0.7064 0 250 1473 16.97217 0.6444 0 0 3189 0.000000 0.3512 0 3.2048 0.6963 1 2.89161 0.7231 3 0.7390 0.7317 0 2.8964 0.6887 1 9.73181 0.7340 5 3510 2046 1353 1021 3510 29.08832 0.7682 1 121 1852 6.533477 0.6717 0 343 696 49.28161 0.9273 1 416 657 63.31811 0.8696 1 759 1353 56.09756 0.9321 1 553 2338 23.65269 0.8871 1 354 3510 10.085470 0.8530 1 643 18.319088 0.60310 0 1002 28.54701 0.9055 1 450 2508 17.942584 0.72330 0 237 786 30.15267 0.8539 1 534 3375 15.822222 0.9062 1 2534 3510 72.19373 0.7818 1 2046 906 44.2815249 0.8690 1 0 0.0000000 0.3216 0 119 1353 8.795270 0.8711 1 324 1353 23.94678 0.7255 0 0 3510 0.0000000 0.1517 0 4.1121 0.9003 4 3.99200 0.9781 3 0.7818 0.7747 1 2.9389 0.7011 2 11.82480 0.9310 10 Yes 0 0 \$0
34001000300 34 001 000300 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3997 1823 1357 1401 3968 35.30746 0.8164 1 382 2238 17.068811 0.9376 1 176 329 53.49544 0.8855 1 604 1028 58.75486 0.7947 1 780 1357 57.47973 0.9165 1 920 2677 34.36683 0.9346 1 1351 4149 32.56206 0.9811 1 314 7.855892 0.1437 0 937 23.44258 0.55900 0 319 3054 10.44532 0.3000 0 187 782 23.913044 0.7498 0 1080 3671 29.419777 0.9742 1 3357 3997 83.98799 0.8419 1 1823 363 19.912233 0.7535 1 0 0.0000000 0.3251 0 150 1357 11.053795 0.9136 1 651 1357 47.97347 0.8585 1 0 3997 0.000000 0.3512 0 4.5862 0.9691 5 2.72670 0.6360 1 0.8419 0.8336 1 3.2019 0.8054 3 11.35670 0.8920 10 3801 1640 1226 1857 3801 48.85556 0.9333 1 226 1800 12.555556 0.9267 1 111 280 39.64286 0.8339 1 608 946 64.27061 0.8842 1 719 1226 58.64600 0.9528 1 650 2275 28.57143 0.9337 1 1027 3801 27.019206 0.9914 1 380 9.997369 0.14040 0 1223 32.17574 0.9607 1 219 2578 8.494957 0.15680 0 268 909 29.48295 0.8456 1 940 3400 27.647059 0.9728 1 3318 3801 87.29282 0.8579 1 1640 262 15.9756098 0.6917 0 0 0.0000000 0.3216 0 124 1226 10.114192 0.8955 1 477 1226 38.90701 0.8258 1 0 3801 0.0000000 0.1517 0 4.7379 0.9829 5 3.07630 0.8013 3 0.8579 0.8501 1 2.8863 0.6781 2 11.55840 0.9150 11 Yes 0 0 \$0
34001000400 34 001 000400 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2902 2683 1401 1172 2902 40.38594 0.8615 1 190 1389 13.678906 0.8811 1 364 707 51.48515 0.8627 1 507 694 73.05476 0.9503 1 871 1401 62.16988 0.9572 1 481 1981 24.28067 0.8339 1 674 3204 21.03620 0.8998 1 434 14.955203 0.6083 0 596 20.53756 0.33980 0 426 2607 16.34062 0.6886 0 111 652 17.024540 0.6204 0 215 2736 7.858187 0.8008 1 1792 2902 61.75052 0.7584 1 2683 2049 76.369735 0.9401 1 0 0.0000000 0.3251 0 69 1401 4.925053 0.7847 1 511 1401 36.47395 0.7992 1 72 2902 2.481048 0.8114 1 4.4335 0.9468 5 3.05790 0.7908 1 0.7584 0.7510 1 3.6605 0.9391 4 11.91030 0.9339 11 3178 2264 1390 1508 3176 47.48111 0.9246 1 172 1804 9.534368 0.8460 1 205 468 43.80342 0.8858 1 622 922 67.46204 0.9192 1 827 1390 59.49640 0.9587 1 364 2076 17.53372 0.8013 1 476 3178 14.977974 0.9390 1 483 15.198238 0.41220 0 539 16.96035 0.2484 0 319 2639 12.087912 0.38790 0 101 565 17.87611 0.6539 0 583 3022 19.291860 0.9349 1 2186 3178 68.78540 0.7658 1 2264 1609 71.0689046 0.9266 1 15 0.6625442 0.7078 0 226 1390 16.258993 0.9567 1 599 1390 43.09353 0.8474 1 20 3178 0.6293266 0.6292 0 4.4696 0.9558 5 2.63730 0.5864 1 0.7658 0.7588 1 4.0677 0.9762 3 11.94040 0.9387 10 Yes 1 4200000 \$4,200,000
34001000500 34 001 000500 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3483 1241 1027 1938 3483 55.64169 0.9533 1 124 1630 7.607362 0.5830 0 227 446 50.89686 0.8549 1 478 581 82.27194 0.9799 1 705 1027 68.64654 0.9863 1 733 2077 35.29129 0.9396 1 727 3258 22.31430 0.9149 1 377 10.824002 0.3081 0 1055 30.28998 0.90140 1 268 2401 11.16202 0.3549 0 209 763 27.391874 0.7940 1 911 3077 29.606760 0.9746 1 3036 3483 87.16624 0.8550 1 1241 52 4.190169 0.4505 0 4 0.3223207 0.6567 0 113 1027 11.002921 0.9128 1 422 1027 41.09056 0.8250 1 0 3483 0.000000 0.3512 0 4.3771 0.9379 4 3.33300 0.8766 3 0.8550 0.8467 1 3.1962 0.8026 2 11.76130 0.9229 10 3385 1185 945 1682 3364 50.00000 0.9391 1 72 1577 4.565631 0.4586 0 185 468 39.52991 0.8332 1 362 477 75.89099 0.9703 1 547 945 57.88360 0.9477 1 592 1983 29.85376 0.9422 1 738 3385 21.802068 0.9817 1 240 7.090103 0.05988 0 1129 33.35303 0.9689 1 135 2256 5.984043 0.04817 0 110 717 15.34170 0.5822 0 721 3076 23.439532 0.9569 1 3029 3385 89.48301 0.8727 1 1185 9 0.7594937 0.2382 0 0 0.0000000 0.3216 0 103 945 10.899471 0.9072 1 263 945 27.83069 0.7560 1 0 3385 0.0000000 0.1517 0 4.2693 0.9283 4 2.61605 0.5709 2 0.8727 0.8648 1 2.3747 0.4357 2 10.13275 0.7921 9 Yes 0 0 \$0
34001001100 34 001 001100 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2204 1204 1204 1185 2204 53.76588 0.9457 1 219 927 23.624596 0.9830 1 97 172 56.39535 0.9094 1 462 1032 44.76744 0.4746 0 559 1204 46.42857 0.7197 0 346 1440 24.02778 0.8306 1 469 1942 24.15036 0.9360 1 363 16.470054 0.7020 0 578 26.22505 0.74410 0 442 1558 28.36970 0.9675 1 247 396 62.373737 0.9898 1 104 2051 5.070697 0.7260 0 2118 2204 96.09800 0.9204 1 1204 570 47.342193 0.8858 1 0 0.0000000 0.3251 0 14 1204 1.162791 0.4877 0 817 1204 67.85714 0.9413 1 0 2204 0.000000 0.3512 0 4.4150 0.9451 4 4.12940 0.9805 2 0.9204 0.9114 1 2.9911 0.7243 2 12.45590 0.9597 9 1950 1267 1096 1131 1950 58.00000 0.9678 1 66 706 9.348442 0.8395 1 42 101 41.58416 0.8612 1 309 995 31.05528 0.1959 0 351 1096 32.02555 0.4782 0 510 1379 36.98332 0.9763 1 155 1950 7.948718 0.7660 1 392 20.102564 0.69880 0 447 22.92308 0.6712 0 570 1503 37.924152 0.99200 1 143 374 38.23529 0.9167 1 109 1841 5.920695 0.7464 0 1909 1950 97.89744 0.9529 1 1267 479 37.8058406 0.8464 1 0 0.0000000 0.3216 0 33 1096 3.010949 0.6446 0 743 1096 67.79197 0.9414 1 0 1950 0.0000000 0.1517 0 4.0278 0.8848 4 4.02510 0.9798 2 0.9529 0.9442 1 2.9057 0.6869 2 11.91150 0.9365 9 Yes 0 0 \$0
# Join national data to nmtc_awards_pre2010, set count to 0 if no data
svi_national_nmtc_eligible <- 
  left_join(svi_national_nmtc_eligible, nmtc_awards_pre2010, join_by("GEOID_2010_trt" == "GEOID10")) %>%
  mutate(pre10_nmtc_project_cnt = if_else(is.na(pre10_nmtc_project_cnt), 0, pre10_nmtc_project_cnt)) %>%
    mutate(pre10_nmtc_dollars = if_else(is.na(pre10_nmtc_dollars), 0, pre10_nmtc_dollars))%>%
    mutate(pre10_nmtc_dollars_formatted = if_else(is.na(pre10_nmtc_dollars_formatted), "$0", pre10_nmtc_dollars_formatted))

# View table
svi_national_nmtc_eligible %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 nmtc_eligibility pre10_nmtc_project_cnt pre10_nmtc_dollars pre10_nmtc_dollars_formatted
01001020200 01 001 020200 AL Alabama Autauga County 1 South Region 6 East South Central Division 2020 816 730 495 1992 24.84940 0.5954 0 68 834 8.153477 0.57540 0 49 439 11.16173 0.02067 0 105 291 36.08247 0.30190 0 154 730 21.09589 0.09312 0 339 1265 26.79842 0.8392 1 313 2012 15.55666 0.6000 0 204 10.09901 0.3419 0 597 29.55446 0.8192 1 359 1515 23.69637 0.8791 1 132 456 28.947368 0.8351 1 15 1890 0.7936508 0.40130 0 1243 2020 61.53465 0.7781 1 816 0 0.0000000 0.1224 0 34 4.1666667 0.6664 0 13 730 1.780822 0.5406 0 115 730 15.753425 0.8382 1 0 2020 0.0000 0.3640 0 2.70312 0.5665 1 3.27660 0.8614 3 0.7781 0.7709 1 2.5316 0.5047 1 9.28942 0.6832 6 1757 720 573 384 1511 25.41363 0.6427 0 29 717 4.044630 0.4132 0 33 392 8.418367 0.03542 0 116 181 64.08840 0.9086 1 149 573 26.00349 0.40410 0 139 1313 10.58644 0.5601 0 91 1533 5.936073 0.4343 0 284 16.163916 0.5169 0 325 18.49744 0.2851 0 164 1208.000 13.57616 0.4127 0 42 359.0000 11.699164 0.3998 0 0 1651 0.0000000 0.09479 0 1116 1757.000 63.51736 0.7591 1 720 3 0.4166667 0.2470 0 5 0.6944444 0.5106 0 9 573 1.5706806 0.4688 0 57 573.000 9.947644 0.7317 0 212 1757 12.0660216 0.9549 1 2.45440 0.4888 0 1.70929 0.1025 0 0.7591 0.7527 1 2.9130 0.6862 1 7.83579 0.4802 2 Yes 0 0 \$0
01001020700 01 001 020700 AL Alabama Autauga County 1 South Region 6 East South Central Division 2664 1254 1139 710 2664 26.65165 0.6328 0 29 1310 2.213741 0.05255 0 134 710 18.87324 0.13890 0 187 429 43.58974 0.47090 0 321 1139 28.18262 0.28130 0 396 1852 21.38229 0.7478 0 345 2878 11.98749 0.4459 0 389 14.60210 0.6417 0 599 22.48499 0.4007 0 510 2168 23.52399 0.8752 1 228 712 32.022472 0.8712 1 0 2480 0.0000000 0.09298 0 694 2664 26.05105 0.5138 0 1254 8 0.6379585 0.2931 0 460 36.6826156 0.9714 1 0 1139 0.000000 0.1238 0 125 1139 10.974539 0.7477 0 0 2664 0.0000 0.3640 0 2.16035 0.4069 0 2.88178 0.6997 2 0.5138 0.5090 0 2.5000 0.4882 1 8.05593 0.5185 3 3562 1313 1248 1370 3528 38.83220 0.8512 1 128 1562 8.194622 0.7935 1 168 844 19.905213 0.44510 0 237 404 58.66337 0.8359 1 405 1248 32.45192 0.60420 0 396 2211 17.91045 0.7857 1 444 3547 12.517620 0.7758 1 355 9.966311 0.1800 0 954 26.78271 0.7923 1 629 2593.000 24.25762 0.8730 1 171 797.0000 21.455458 0.7186 0 0 3211 0.0000000 0.09479 0 1009 3562.000 28.32678 0.4668 0 1313 14 1.0662605 0.3165 0 443 33.7395278 0.9663 1 73 1248 5.8493590 0.8211 1 17 1248.000 1.362180 0.1554 0 112 3562 3.1443010 0.8514 1 3.81040 0.8569 4 2.65869 0.5847 2 0.4668 0.4629 0 3.1107 0.7714 3 10.04659 0.7851 9 Yes 0 0 \$0
01001021100 01 001 021100 AL Alabama Autauga County 1 South Region 6 East South Central Division 3298 1502 1323 860 3298 26.07641 0.6211 0 297 1605 18.504673 0.94340 1 250 1016 24.60630 0.32070 0 74 307 24.10423 0.11920 0 324 1323 24.48980 0.17380 0 710 2231 31.82429 0.8976 1 654 3565 18.34502 0.7018 0 411 12.46210 0.5001 0 738 22.37720 0.3934 0 936 2861 32.71583 0.9807 1 138 825 16.727273 0.5715 0 9 3155 0.2852615 0.25010 0 1979 3298 60.00606 0.7703 1 1502 14 0.9320905 0.3234 0 659 43.8748336 0.9849 1 44 1323 3.325775 0.7062 0 137 1323 10.355253 0.7313 0 0 3298 0.0000 0.3640 0 3.33770 0.7351 2 2.69580 0.6028 1 0.7703 0.7631 1 3.1098 0.7827 1 9.91360 0.7557 5 3499 1825 1462 1760 3499 50.30009 0.9396 1 42 966 4.347826 0.4539 0 426 1274 33.437991 0.85200 1 52 188 27.65957 0.1824 0 478 1462 32.69494 0.61110 0 422 2488 16.96141 0.7638 1 497 3499 14.204058 0.8246 1 853 24.378394 0.8688 1 808 23.09231 0.5829 0 908 2691.100 33.74084 0.9808 1 179 811.6985 22.052524 0.7323 0 8 3248 0.2463054 0.26220 0 1986 3498.713 56.76373 0.7175 0 1825 29 1.5890411 0.3551 0 576 31.5616438 0.9594 1 88 1462 6.0191518 0.8269 1 148 1461.993 10.123166 0.7364 0 38 3499 1.0860246 0.7013 0 3.59300 0.8073 3 3.42700 0.9156 2 0.7175 0.7114 0 3.5791 0.9216 2 11.31660 0.9150 7 Yes 0 0 \$0
01003010200 01 003 010200 AL Alabama Baldwin County 1 South Region 6 East South Central Division 2612 1220 1074 338 2605 12.97505 0.2907 0 44 1193 3.688181 0.14720 0 172 928 18.53448 0.13090 0 31 146 21.23288 0.09299 0 203 1074 18.90130 0.05657 0 455 1872 24.30556 0.8016 1 456 2730 16.70330 0.6445 0 401 15.35222 0.6847 0 563 21.55436 0.3406 0 410 2038 20.11776 0.7755 1 64 779 8.215661 0.2181 0 0 2510 0.0000000 0.09298 0 329 2612 12.59571 0.3113 0 1220 38 3.1147541 0.4648 0 385 31.5573770 0.9545 1 20 1074 1.862197 0.5509 0 43 1074 4.003724 0.4088 0 0 2612 0.0000 0.3640 0 1.94057 0.3398 1 2.11188 0.2802 1 0.3113 0.3084 0 2.7430 0.6129 1 7.10675 0.3771 3 2928 1312 1176 884 2928 30.19126 0.7334 0 29 1459 1.987663 0.1356 0 71 830 8.554217 0.03726 0 134 346 38.72832 0.3964 0 205 1176 17.43197 0.12010 0 294 2052 14.32749 0.6940 0 219 2925 7.487179 0.5423 0 556 18.989071 0.6705 0 699 23.87295 0.6339 0 489 2226.455 21.96317 0.8122 1 191 783.8820 24.365914 0.7799 1 0 2710 0.0000000 0.09479 0 398 2927.519 13.59513 0.2511 0 1312 13 0.9908537 0.3111 0 400 30.4878049 0.9557 1 6 1176 0.5102041 0.2590 0 81 1176.202 6.886570 0.6115 0 7 2928 0.2390710 0.4961 0 2.22540 0.4183 0 2.99129 0.7634 2 0.2511 0.2490 0 2.6334 0.5496 1 8.10119 0.5207 3 Yes 0 0 \$0
01003010500 01 003 010500 AL Alabama Baldwin County 1 South Region 6 East South Central Division 4230 1779 1425 498 3443 14.46413 0.3337 0 166 1625 10.215385 0.71790 0 151 1069 14.12535 0.04638 0 196 356 55.05618 0.73830 0 347 1425 24.35088 0.17010 0 707 2945 24.00679 0.7967 1 528 4001 13.19670 0.5005 0 619 14.63357 0.6436 0 790 18.67612 0.1937 0 536 3096 17.31266 0.6572 0 165 920 17.934783 0.6102 0 20 4021 0.4973887 0.32320 0 754 4230 17.82506 0.4023 0 1779 97 5.4525014 0.5525 0 8 0.4496908 0.4600 0 63 1425 4.421053 0.7762 1 90 1425 6.315790 0.5691 0 787 4230 18.6052 0.9649 1 2.51890 0.5121 1 2.42790 0.4539 0 0.4023 0.3986 0 3.3227 0.8628 2 8.67180 0.6054 3 5877 1975 1836 820 5244 15.63692 0.3902 0 90 2583 3.484321 0.3361 0 159 1345 11.821561 0.10530 0 139 491 28.30957 0.1924 0 298 1836 16.23094 0.09053 0 570 4248 13.41808 0.6669 0 353 5247 6.727654 0.4924 0 1109 18.870172 0.6645 0 1144 19.46571 0.3411 0 717 4102.545 17.47696 0.6332 0 103 1286.1180 8.008596 0.2341 0 0 5639 0.0000000 0.09479 0 868 5877.481 14.76823 0.2709 0 1975 26 1.3164557 0.3359 0 45 2.2784810 0.6271 0 9 1836 0.4901961 0.2540 0 116 1835.798 6.318779 0.5811 0 633 5877 10.7708014 0.9507 1 1.97613 0.3410 0 1.96769 0.1961 0 0.2709 0.2686 0 2.7488 0.6077 1 6.96352 0.3406 1 Yes 0 0 \$0
01003010600 01 003 010600 AL Alabama Baldwin County 1 South Region 6 East South Central Division 3724 1440 1147 1973 3724 52.98067 0.9342 1 142 1439 9.867964 0.69680 0 235 688 34.15698 0.62950 0 187 459 40.74074 0.40290 0 422 1147 36.79163 0.55150 0 497 1876 26.49254 0.8354 1 511 3661 13.95794 0.5334 0 246 6.60580 0.1481 0 1256 33.72718 0.9305 1 496 2522 19.66693 0.7587 1 274 838 32.696897 0.8779 1 32 3479 0.9198045 0.42810 0 2606 3724 69.97852 0.8184 1 1440 21 1.4583333 0.3683 0 321 22.2916667 0.9036 1 97 1147 8.456844 0.8956 1 167 1147 14.559721 0.8209 1 0 3724 0.0000 0.3640 0 3.55130 0.7859 2 3.14330 0.8145 3 0.8184 0.8108 1 3.3524 0.8725 3 10.86540 0.8550 9 4115 1534 1268 1676 3997 41.93145 0.8814 1 294 1809 16.252073 0.9674 1 341 814 41.891892 0.94320 1 204 454 44.93392 0.5438 0 545 1268 42.98107 0.83620 1 624 2425 25.73196 0.9002 1 994 4115 24.155529 0.9602 1 642 15.601458 0.4841 0 1126 27.36331 0.8175 1 568 2989.000 19.00301 0.7045 0 212 715.0000 29.650350 0.8592 1 56 3825 1.4640523 0.53120 0 2715 4115.000 65.97813 0.7732 1 1534 0 0.0000000 0.1079 0 529 34.4850065 0.9685 1 101 1268 7.9652997 0.8795 1 89 1268.000 7.018927 0.6184 0 17 4115 0.4131227 0.5707 0 4.54540 0.9754 5 3.39650 0.9081 2 0.7732 0.7667 1 3.1450 0.7858 2 11.86010 0.9520 10 Yes 0 0 \$0
# Find count of NMTC projects after 2010
# Remove all tracts that do not have SVI flag counts for 2010
# Remove all tracts that do not have SVI flag counts for 2020
# Remove all tracts that had an NMTC project before 2010
svi_divisional_nmtc <- 
  left_join(svi_divisional_nmtc_eligible, nmtc_awards_post2010, join_by("GEOID_2010_trt" == "GEOID10")) %>%
  mutate(post10_nmtc_project_cnt = if_else(is.na(post10_nmtc_project_cnt), 0, post10_nmtc_project_cnt)) %>%
  mutate(post10_nmtc_dollars = if_else(is.na(post10_nmtc_dollars), 0, post10_nmtc_dollars))%>%
  mutate(post10_nmtc_dollars_formatted = if_else(is.na(post10_nmtc_dollars_formatted), "$0", post10_nmtc_dollars_formatted)) %>%
  mutate(nmtc_flag = if_else(post10_nmtc_project_cnt > 0, 1, 0)) %>% 
  filter(!is.na(F_TOTAL_10)) %>% 
  filter(!is.na(F_TOTAL_20)) %>% 
  filter(pre10_nmtc_project_cnt < 1)

svi_divisional_nmtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 nmtc_eligibility pre10_nmtc_project_cnt pre10_nmtc_dollars pre10_nmtc_dollars_formatted post10_nmtc_project_cnt post10_nmtc_dollars post10_nmtc_dollars_formatted nmtc_flag
34001000100 34 001 000100 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2907 1088 983 1127 2907 38.76849 0.8482 1 144 1433 10.048849 0.7544 1 280 435 64.36782 0.9529 1 204 548 37.22628 0.2998 0 484 983 49.23703 0.7813 1 468 1759 26.60603 0.8634 1 532 2543 20.92017 0.8978 1 250 8.599931 0.1777 0 944 32.47334 0.94170 1 186 1851 10.04862 0.2706 0 266 678 39.233038 0.8981 1 177 2611 6.779012 0.7778 1 1928 2907 66.32267 0.7743 1 1088 113 10.386029 0.6229 0 9 0.8272059 0.7223 0 80 983 8.138352 0.8657 1 265 983 26.95829 0.7354 0 0 2907 0 0.3512 0 4.1451 0.8935 5 3.06590 0.7944 3 0.7743 0.7667 1 3.2975 0.8414 1 11.28280 0.8862 10 2157 941 784 1182 2157 54.79833 0.9571 1 242 1058 22.873346 0.9922 1 215 342 62.86550 0.9780 1 316 442 71.49321 0.9481 1 531 784 67.72959 0.9893 1 396 1274 31.08320 0.9497 1 266 2157 12.331943 0.9041 1 185 8.576727 0.09430 0 552 25.59110 0.8128 1 297 1605 18.504673 0.74880 0 83 510 16.27451 0.6090 0 251 2020 12.425743 0.87100 1 1852 2157 85.85999 0.8476 1 941 118 12.5398512 0.6385 0 0 0.00000 0.3216 0 67 784 8.545918 0.8657 1 212 784 27.04082 0.7502 1 0 2157 0.0000000 0.1517 0 4.7924 0.9850 5 3.13590 0.8217 2 0.8476 0.8400 1 2.7277 0.6085 2 11.50360 0.9104 10 Yes 0 0 \$0 0 0 \$0 0
34001000200 34 001 000200 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3189 2217 1473 519 3189 16.27469 0.4806 0 109 1558 6.996149 0.5179 0 573 955 60.00000 0.9323 1 199 518 38.41699 0.3261 0 772 1473 52.41005 0.8418 1 405 2579 15.70376 0.6491 0 484 3547 13.64533 0.7154 0 847 26.560050 0.9629 1 436 13.67200 0.08181 0 608 3005 20.23295 0.8466 1 42 857 4.900817 0.1204 0 422 3072 13.736979 0.8799 1 1792 3189 56.19316 0.7390 0 2217 901 40.640505 0.8693 1 0 0.0000000 0.3251 0 48 1473 3.258656 0.7064 0 250 1473 16.97217 0.6444 0 0 3189 0 0.3512 0 3.2048 0.6963 1 2.89161 0.7231 3 0.7390 0.7317 0 2.8964 0.6887 1 9.73181 0.7340 5 3510 2046 1353 1021 3510 29.08832 0.7682 1 121 1852 6.533477 0.6717 0 343 696 49.28161 0.9273 1 416 657 63.31811 0.8696 1 759 1353 56.09756 0.9321 1 553 2338 23.65269 0.8871 1 354 3510 10.085470 0.8530 1 643 18.319088 0.60310 0 1002 28.54701 0.9055 1 450 2508 17.942584 0.72330 0 237 786 30.15267 0.8539 1 534 3375 15.822222 0.90620 1 2534 3510 72.19373 0.7818 1 2046 906 44.2815249 0.8690 1 0 0.00000 0.3216 0 119 1353 8.795270 0.8711 1 324 1353 23.94678 0.7255 0 0 3510 0.0000000 0.1517 0 4.1121 0.9003 4 3.99200 0.9781 3 0.7818 0.7747 1 2.9389 0.7011 2 11.82480 0.9310 10 Yes 0 0 \$0 0 0 \$0 0
34001000300 34 001 000300 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3997 1823 1357 1401 3968 35.30746 0.8164 1 382 2238 17.068811 0.9376 1 176 329 53.49544 0.8855 1 604 1028 58.75486 0.7947 1 780 1357 57.47973 0.9165 1 920 2677 34.36683 0.9346 1 1351 4149 32.56206 0.9811 1 314 7.855892 0.1437 0 937 23.44258 0.55900 0 319 3054 10.44532 0.3000 0 187 782 23.913044 0.7498 0 1080 3671 29.419777 0.9742 1 3357 3997 83.98799 0.8419 1 1823 363 19.912233 0.7535 1 0 0.0000000 0.3251 0 150 1357 11.053795 0.9136 1 651 1357 47.97347 0.8585 1 0 3997 0 0.3512 0 4.5862 0.9691 5 2.72670 0.6360 1 0.8419 0.8336 1 3.2019 0.8054 3 11.35670 0.8920 10 3801 1640 1226 1857 3801 48.85556 0.9333 1 226 1800 12.555556 0.9267 1 111 280 39.64286 0.8339 1 608 946 64.27061 0.8842 1 719 1226 58.64600 0.9528 1 650 2275 28.57143 0.9337 1 1027 3801 27.019206 0.9914 1 380 9.997369 0.14040 0 1223 32.17574 0.9607 1 219 2578 8.494957 0.15680 0 268 909 29.48295 0.8456 1 940 3400 27.647059 0.97280 1 3318 3801 87.29282 0.8579 1 1640 262 15.9756098 0.6917 0 0 0.00000 0.3216 0 124 1226 10.114192 0.8955 1 477 1226 38.90701 0.8258 1 0 3801 0.0000000 0.1517 0 4.7379 0.9829 5 3.07630 0.8013 3 0.8579 0.8501 1 2.8863 0.6781 2 11.55840 0.9150 11 Yes 0 0 \$0 0 0 \$0 0
34001000500 34 001 000500 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3483 1241 1027 1938 3483 55.64169 0.9533 1 124 1630 7.607362 0.5830 0 227 446 50.89686 0.8549 1 478 581 82.27194 0.9799 1 705 1027 68.64654 0.9863 1 733 2077 35.29129 0.9396 1 727 3258 22.31430 0.9149 1 377 10.824002 0.3081 0 1055 30.28998 0.90140 1 268 2401 11.16202 0.3549 0 209 763 27.391874 0.7940 1 911 3077 29.606760 0.9746 1 3036 3483 87.16624 0.8550 1 1241 52 4.190169 0.4505 0 4 0.3223207 0.6567 0 113 1027 11.002921 0.9128 1 422 1027 41.09056 0.8250 1 0 3483 0 0.3512 0 4.3771 0.9379 4 3.33300 0.8766 3 0.8550 0.8467 1 3.1962 0.8026 2 11.76130 0.9229 10 3385 1185 945 1682 3364 50.00000 0.9391 1 72 1577 4.565631 0.4586 0 185 468 39.52991 0.8332 1 362 477 75.89099 0.9703 1 547 945 57.88360 0.9477 1 592 1983 29.85376 0.9422 1 738 3385 21.802068 0.9817 1 240 7.090103 0.05988 0 1129 33.35303 0.9689 1 135 2256 5.984043 0.04817 0 110 717 15.34170 0.5822 0 721 3076 23.439532 0.95690 1 3029 3385 89.48301 0.8727 1 1185 9 0.7594937 0.2382 0 0 0.00000 0.3216 0 103 945 10.899471 0.9072 1 263 945 27.83069 0.7560 1 0 3385 0.0000000 0.1517 0 4.2693 0.9283 4 2.61605 0.5709 2 0.8727 0.8648 1 2.3747 0.4357 2 10.13275 0.7921 9 Yes 0 0 \$0 0 0 \$0 0
34001001100 34 001 001100 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2204 1204 1204 1185 2204 53.76588 0.9457 1 219 927 23.624596 0.9830 1 97 172 56.39535 0.9094 1 462 1032 44.76744 0.4746 0 559 1204 46.42857 0.7197 0 346 1440 24.02778 0.8306 1 469 1942 24.15036 0.9360 1 363 16.470054 0.7020 0 578 26.22505 0.74410 0 442 1558 28.36970 0.9675 1 247 396 62.373737 0.9898 1 104 2051 5.070697 0.7260 0 2118 2204 96.09800 0.9204 1 1204 570 47.342193 0.8858 1 0 0.0000000 0.3251 0 14 1204 1.162791 0.4877 0 817 1204 67.85714 0.9413 1 0 2204 0 0.3512 0 4.4150 0.9451 4 4.12940 0.9805 2 0.9204 0.9114 1 2.9911 0.7243 2 12.45590 0.9597 9 1950 1267 1096 1131 1950 58.00000 0.9678 1 66 706 9.348442 0.8395 1 42 101 41.58416 0.8612 1 309 995 31.05528 0.1959 0 351 1096 32.02555 0.4782 0 510 1379 36.98332 0.9763 1 155 1950 7.948718 0.7660 1 392 20.102564 0.69880 0 447 22.92308 0.6712 0 570 1503 37.924152 0.99200 1 143 374 38.23529 0.9167 1 109 1841 5.920695 0.74640 0 1909 1950 97.89744 0.9529 1 1267 479 37.8058406 0.8464 1 0 0.00000 0.3216 0 33 1096 3.010949 0.6446 0 743 1096 67.79197 0.9414 1 0 1950 0.0000000 0.1517 0 4.0278 0.8848 4 4.02510 0.9798 2 0.9529 0.9442 1 2.9057 0.6869 2 11.91150 0.9365 9 Yes 0 0 \$0 0 0 \$0 0
34001001300 34 001 001300 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2153 1026 857 695 2153 32.28054 0.7840 1 266 1112 23.920863 0.9840 1 168 432 38.88889 0.6425 0 271 425 63.76471 0.8714 1 439 857 51.22520 0.8184 1 210 1471 14.27600 0.5989 0 463 2215 20.90293 0.8974 1 334 15.513237 0.6436 0 539 25.03484 0.66990 0 222 1687 13.15945 0.4984 0 265 608 43.585526 0.9249 1 92 1905 4.829396 0.7187 0 1993 2153 92.56851 0.8890 1 1026 147 14.327485 0.6885 0 0 0.0000000 0.3251 0 20 857 2.333722 0.6326 0 142 857 16.56943 0.6382 0 0 2153 0 0.3512 0 4.0827 0.8798 4 3.45550 0.9039 1 0.8890 0.8804 1 2.6356 0.5687 0 11.06280 0.8673 6 1632 917 770 591 1632 36.21324 0.8455 1 203 854 23.770492 0.9928 1 164 291 56.35739 0.9604 1 364 479 75.99165 0.9710 1 528 770 68.57143 0.9914 1 150 1056 14.20455 0.7232 0 97 1632 5.943627 0.6352 0 301 18.443628 0.60940 0 271 16.60539 0.2292 0 314 1361 23.071271 0.88960 1 148 410 36.09756 0.9025 1 0 1585 0.000000 0.06953 0 1512 1632 92.64706 0.8931 1 917 246 26.8266085 0.7912 1 16 1.74482 0.7855 1 0 770 0.000000 0.1194 0 219 770 28.44156 0.7606 1 14 1632 0.8578431 0.6722 0 4.1881 0.9131 3 2.70023 0.6211 2 0.8931 0.8850 1 3.1289 0.7740 3 10.91033 0.8638 9 Yes 0 0 \$0 0 0 \$0 0
# Find count of NMTC projects after 2010
# Remove all tracts that do not have SVI flag counts for 2010
# Remove all tracts that do not have SVI flag counts for 2020
# Remove all tracts that had an NMTC project before 2010
svi_national_nmtc <- 
  left_join(svi_national_nmtc_eligible, nmtc_awards_post2010, join_by("GEOID_2010_trt" == "GEOID10")) %>%
  mutate(post10_nmtc_project_cnt = if_else(is.na(post10_nmtc_project_cnt), 0, post10_nmtc_project_cnt)) %>%
  mutate(post10_nmtc_dollars = if_else(is.na(post10_nmtc_dollars), 0, post10_nmtc_dollars))%>%
  mutate(post10_nmtc_dollars_formatted = if_else(is.na(post10_nmtc_dollars_formatted), "$0", post10_nmtc_dollars_formatted)) %>%
  mutate(nmtc_flag = if_else(post10_nmtc_project_cnt > 0, 1, 0)) %>% 
  filter(!is.na(F_TOTAL_10)) %>% 
  filter(!is.na(F_TOTAL_20)) %>% 
  filter(pre10_nmtc_project_cnt < 1)

svi_national_nmtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 nmtc_eligibility pre10_nmtc_project_cnt pre10_nmtc_dollars pre10_nmtc_dollars_formatted post10_nmtc_project_cnt post10_nmtc_dollars post10_nmtc_dollars_formatted nmtc_flag
01001020200 01 001 020200 AL Alabama Autauga County 1 South Region 6 East South Central Division 2020 816 730 495 1992 24.84940 0.5954 0 68 834 8.153477 0.57540 0 49 439 11.16173 0.02067 0 105 291 36.08247 0.30190 0 154 730 21.09589 0.09312 0 339 1265 26.79842 0.8392 1 313 2012 15.55666 0.6000 0 204 10.09901 0.3419 0 597 29.55446 0.8192 1 359 1515 23.69637 0.8791 1 132 456 28.947368 0.8351 1 15 1890 0.7936508 0.40130 0 1243 2020 61.53465 0.7781 1 816 0 0.0000000 0.1224 0 34 4.1666667 0.6664 0 13 730 1.780822 0.5406 0 115 730 15.753425 0.8382 1 0 2020 0.0000 0.3640 0 2.70312 0.5665 1 3.27660 0.8614 3 0.7781 0.7709 1 2.5316 0.5047 1 9.28942 0.6832 6 1757 720 573 384 1511 25.41363 0.6427 0 29 717 4.044630 0.4132 0 33 392 8.418367 0.03542 0 116 181 64.08840 0.9086 1 149 573 26.00349 0.40410 0 139 1313 10.58644 0.5601 0 91 1533 5.936073 0.4343 0 284 16.163916 0.5169 0 325 18.49744 0.2851 0 164 1208.000 13.57616 0.4127 0 42 359.0000 11.699164 0.3998 0 0 1651 0.0000000 0.09479 0 1116 1757.000 63.51736 0.7591 1 720 3 0.4166667 0.2470 0 5 0.6944444 0.5106 0 9 573 1.5706806 0.4688 0 57 573.000 9.947644 0.7317 0 212 1757 12.0660216 0.9549 1 2.45440 0.4888 0 1.70929 0.1025 0 0.7591 0.7527 1 2.9130 0.6862 1 7.83579 0.4802 2 Yes 0 0 \$0 0 0 \$0 0
01001020700 01 001 020700 AL Alabama Autauga County 1 South Region 6 East South Central Division 2664 1254 1139 710 2664 26.65165 0.6328 0 29 1310 2.213741 0.05255 0 134 710 18.87324 0.13890 0 187 429 43.58974 0.47090 0 321 1139 28.18262 0.28130 0 396 1852 21.38229 0.7478 0 345 2878 11.98749 0.4459 0 389 14.60210 0.6417 0 599 22.48499 0.4007 0 510 2168 23.52399 0.8752 1 228 712 32.022472 0.8712 1 0 2480 0.0000000 0.09298 0 694 2664 26.05105 0.5138 0 1254 8 0.6379585 0.2931 0 460 36.6826156 0.9714 1 0 1139 0.000000 0.1238 0 125 1139 10.974539 0.7477 0 0 2664 0.0000 0.3640 0 2.16035 0.4069 0 2.88178 0.6997 2 0.5138 0.5090 0 2.5000 0.4882 1 8.05593 0.5185 3 3562 1313 1248 1370 3528 38.83220 0.8512 1 128 1562 8.194622 0.7935 1 168 844 19.905213 0.44510 0 237 404 58.66337 0.8359 1 405 1248 32.45192 0.60420 0 396 2211 17.91045 0.7857 1 444 3547 12.517620 0.7758 1 355 9.966311 0.1800 0 954 26.78271 0.7923 1 629 2593.000 24.25762 0.8730 1 171 797.0000 21.455458 0.7186 0 0 3211 0.0000000 0.09479 0 1009 3562.000 28.32678 0.4668 0 1313 14 1.0662605 0.3165 0 443 33.7395278 0.9663 1 73 1248 5.8493590 0.8211 1 17 1248.000 1.362180 0.1554 0 112 3562 3.1443010 0.8514 1 3.81040 0.8569 4 2.65869 0.5847 2 0.4668 0.4629 0 3.1107 0.7714 3 10.04659 0.7851 9 Yes 0 0 \$0 0 0 \$0 0
01001021100 01 001 021100 AL Alabama Autauga County 1 South Region 6 East South Central Division 3298 1502 1323 860 3298 26.07641 0.6211 0 297 1605 18.504673 0.94340 1 250 1016 24.60630 0.32070 0 74 307 24.10423 0.11920 0 324 1323 24.48980 0.17380 0 710 2231 31.82429 0.8976 1 654 3565 18.34502 0.7018 0 411 12.46210 0.5001 0 738 22.37720 0.3934 0 936 2861 32.71583 0.9807 1 138 825 16.727273 0.5715 0 9 3155 0.2852615 0.25010 0 1979 3298 60.00606 0.7703 1 1502 14 0.9320905 0.3234 0 659 43.8748336 0.9849 1 44 1323 3.325775 0.7062 0 137 1323 10.355253 0.7313 0 0 3298 0.0000 0.3640 0 3.33770 0.7351 2 2.69580 0.6028 1 0.7703 0.7631 1 3.1098 0.7827 1 9.91360 0.7557 5 3499 1825 1462 1760 3499 50.30009 0.9396 1 42 966 4.347826 0.4539 0 426 1274 33.437991 0.85200 1 52 188 27.65957 0.1824 0 478 1462 32.69494 0.61110 0 422 2488 16.96141 0.7638 1 497 3499 14.204058 0.8246 1 853 24.378394 0.8688 1 808 23.09231 0.5829 0 908 2691.100 33.74084 0.9808 1 179 811.6985 22.052524 0.7323 0 8 3248 0.2463054 0.26220 0 1986 3498.713 56.76373 0.7175 0 1825 29 1.5890411 0.3551 0 576 31.5616438 0.9594 1 88 1462 6.0191518 0.8269 1 148 1461.993 10.123166 0.7364 0 38 3499 1.0860246 0.7013 0 3.59300 0.8073 3 3.42700 0.9156 2 0.7175 0.7114 0 3.5791 0.9216 2 11.31660 0.9150 7 Yes 0 0 \$0 0 0 \$0 0
01003010200 01 003 010200 AL Alabama Baldwin County 1 South Region 6 East South Central Division 2612 1220 1074 338 2605 12.97505 0.2907 0 44 1193 3.688181 0.14720 0 172 928 18.53448 0.13090 0 31 146 21.23288 0.09299 0 203 1074 18.90130 0.05657 0 455 1872 24.30556 0.8016 1 456 2730 16.70330 0.6445 0 401 15.35222 0.6847 0 563 21.55436 0.3406 0 410 2038 20.11776 0.7755 1 64 779 8.215661 0.2181 0 0 2510 0.0000000 0.09298 0 329 2612 12.59571 0.3113 0 1220 38 3.1147541 0.4648 0 385 31.5573770 0.9545 1 20 1074 1.862197 0.5509 0 43 1074 4.003724 0.4088 0 0 2612 0.0000 0.3640 0 1.94057 0.3398 1 2.11188 0.2802 1 0.3113 0.3084 0 2.7430 0.6129 1 7.10675 0.3771 3 2928 1312 1176 884 2928 30.19126 0.7334 0 29 1459 1.987663 0.1356 0 71 830 8.554217 0.03726 0 134 346 38.72832 0.3964 0 205 1176 17.43197 0.12010 0 294 2052 14.32749 0.6940 0 219 2925 7.487179 0.5423 0 556 18.989071 0.6705 0 699 23.87295 0.6339 0 489 2226.455 21.96317 0.8122 1 191 783.8820 24.365914 0.7799 1 0 2710 0.0000000 0.09479 0 398 2927.519 13.59513 0.2511 0 1312 13 0.9908537 0.3111 0 400 30.4878049 0.9557 1 6 1176 0.5102041 0.2590 0 81 1176.202 6.886570 0.6115 0 7 2928 0.2390710 0.4961 0 2.22540 0.4183 0 2.99129 0.7634 2 0.2511 0.2490 0 2.6334 0.5496 1 8.10119 0.5207 3 Yes 0 0 \$0 1 408000 \$408,000 1
01003010500 01 003 010500 AL Alabama Baldwin County 1 South Region 6 East South Central Division 4230 1779 1425 498 3443 14.46413 0.3337 0 166 1625 10.215385 0.71790 0 151 1069 14.12535 0.04638 0 196 356 55.05618 0.73830 0 347 1425 24.35088 0.17010 0 707 2945 24.00679 0.7967 1 528 4001 13.19670 0.5005 0 619 14.63357 0.6436 0 790 18.67612 0.1937 0 536 3096 17.31266 0.6572 0 165 920 17.934783 0.6102 0 20 4021 0.4973887 0.32320 0 754 4230 17.82506 0.4023 0 1779 97 5.4525014 0.5525 0 8 0.4496908 0.4600 0 63 1425 4.421053 0.7762 1 90 1425 6.315790 0.5691 0 787 4230 18.6052 0.9649 1 2.51890 0.5121 1 2.42790 0.4539 0 0.4023 0.3986 0 3.3227 0.8628 2 8.67180 0.6054 3 5877 1975 1836 820 5244 15.63692 0.3902 0 90 2583 3.484321 0.3361 0 159 1345 11.821561 0.10530 0 139 491 28.30957 0.1924 0 298 1836 16.23094 0.09053 0 570 4248 13.41808 0.6669 0 353 5247 6.727654 0.4924 0 1109 18.870172 0.6645 0 1144 19.46571 0.3411 0 717 4102.545 17.47696 0.6332 0 103 1286.1180 8.008596 0.2341 0 0 5639 0.0000000 0.09479 0 868 5877.481 14.76823 0.2709 0 1975 26 1.3164557 0.3359 0 45 2.2784810 0.6271 0 9 1836 0.4901961 0.2540 0 116 1835.798 6.318779 0.5811 0 633 5877 10.7708014 0.9507 1 1.97613 0.3410 0 1.96769 0.1961 0 0.2709 0.2686 0 2.7488 0.6077 1 6.96352 0.3406 1 Yes 0 0 \$0 0 0 \$0 0
01003010600 01 003 010600 AL Alabama Baldwin County 1 South Region 6 East South Central Division 3724 1440 1147 1973 3724 52.98067 0.9342 1 142 1439 9.867964 0.69680 0 235 688 34.15698 0.62950 0 187 459 40.74074 0.40290 0 422 1147 36.79163 0.55150 0 497 1876 26.49254 0.8354 1 511 3661 13.95794 0.5334 0 246 6.60580 0.1481 0 1256 33.72718 0.9305 1 496 2522 19.66693 0.7587 1 274 838 32.696897 0.8779 1 32 3479 0.9198045 0.42810 0 2606 3724 69.97852 0.8184 1 1440 21 1.4583333 0.3683 0 321 22.2916667 0.9036 1 97 1147 8.456844 0.8956 1 167 1147 14.559721 0.8209 1 0 3724 0.0000 0.3640 0 3.55130 0.7859 2 3.14330 0.8145 3 0.8184 0.8108 1 3.3524 0.8725 3 10.86540 0.8550 9 4115 1534 1268 1676 3997 41.93145 0.8814 1 294 1809 16.252073 0.9674 1 341 814 41.891892 0.94320 1 204 454 44.93392 0.5438 0 545 1268 42.98107 0.83620 1 624 2425 25.73196 0.9002 1 994 4115 24.155529 0.9602 1 642 15.601458 0.4841 0 1126 27.36331 0.8175 1 568 2989.000 19.00301 0.7045 0 212 715.0000 29.650350 0.8592 1 56 3825 1.4640523 0.53120 0 2715 4115.000 65.97813 0.7732 1 1534 0 0.0000000 0.1079 0 529 34.4850065 0.9685 1 101 1268 7.9652997 0.8795 1 89 1268.000 7.018927 0.6184 0 17 4115 0.4131227 0.5707 0 4.54540 0.9754 5 3.39650 0.9081 2 0.7732 0.7667 1 3.1450 0.7858 2 11.86010 0.9520 10 Yes 0 0 \$0 1 8000000 \$8,000,000 1
svi_national_nmtc_county_sum <- summarize_county_nmtc(svi_national_nmtc)

svi_national_nmtc_county_sum %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State County Division post10_nmtc_project_cnt tract_cnt post10_nmtc_project_dollars post10_nmtc_dollars_formatted
AK Aleutians East Borough Pacific Division 1 1 15762500 \$15,762,500
AK Aleutians West Census Area Pacific Division 0 1 0 \$0
AK Anchorage Municipality Pacific Division 1 13 9800000 \$9,800,000
AK Bethel Census Area Pacific Division 0 1 0 \$0
AK Fairbanks North Star Borough Pacific Division 0 4 0 \$0
AK Hoonah-Angoon Census Area Pacific Division 0 1 0 \$0
svi_divisional_nmtc_county_sum <- summarize_county_nmtc(svi_divisional_nmtc)
svi_divisional_nmtc_county_sum %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State County Division post10_nmtc_project_cnt tract_cnt post10_nmtc_project_dollars post10_nmtc_dollars_formatted
NJ Atlantic County Middle Atlantic Division 0 29 0 \$0
NJ Bergen County Middle Atlantic Division 1 30 10000000 \$10,000,000
NJ Burlington County Middle Atlantic Division 0 20 0 \$0
NJ Camden County Middle Atlantic Division 5 47 79664200 \$79,664,200
NJ Cape May County Middle Atlantic Division 0 12 0 \$0
NJ Cumberland County Middle Atlantic Division 2 21 33187593 \$33,187,593
# Create data frame of NMTC eligible tracts 2010 nationally
svi_national_nmtc10 <- svi_national_nmtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county, 
    state, state_name, county, region_number, region, division_number, 
    division, F_TOTAL_10, E_TOTPOP_10) %>% rename("F_TOTAL" = "F_TOTAL_10")

# Count national-level SVI flags for 2010, create unified fips column
svi_2010_national_county_flags_nmtc <- flag_summarize(svi_national_nmtc10, "E_TOTPOP_10") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")

# Add suffix to flag columns 2010
colnames(svi_2010_national_county_flags_nmtc)[11:15] <- paste0(colnames(svi_2010_national_county_flags_nmtc)[11:15], 10)

# Create data frame of NMTC eligible tracts 2020 nationally
svi_national_nmtc20 <- svi_national_nmtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county, 
    state, state_name, county, region_number, region, division_number, 
    division, F_TOTAL_20, E_TOTPOP_20) %>% rename("F_TOTAL" = "F_TOTAL_20")

# Count national-level SVI flags for 2020, create unified fips column
svi_2020_national_county_flags_nmtc <- flag_summarize(svi_national_nmtc20, "E_TOTPOP_20") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")

# Identify needed columns for 2020, add suffix
colnames(svi_2020_national_county_flags_nmtc)[11:15] <- paste0(colnames(svi_2020_national_county_flags_nmtc)[11:15], "20")

# Filter to needed columns for 2020 to avoid duplicate column column names
svi_2020_national_county_flags_join_nmtc <- svi_2020_national_county_flags_nmtc %>% ungroup() %>% select("fips_county_st", all_of(colnames(svi_2020_national_county_flags_nmtc)[11:15]))
 
# Join 2010 and 2020 data
svi_national_county_flags_nmtc <- left_join(svi_2010_national_county_flags_nmtc, svi_2020_national_county_flags_join_nmtc, join_by("fips_county_st" == "fips_county_st")) 

svi_national_county_flags_nmtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
fips_county_st FIPS_st FIPS_county state state_name county region_number region division_number division flag_count10 pop10 flag_by_pop10 flag_count_quantile10 flag_pop_quantile10 flag_count20 pop20 flag_by_pop20 flag_count_quantile20 flag_pop_quantile20
01001 01 001 AL Alabama Autauga County 1 South Region 6 East South Central Division 14 7982 0.0017539 0.6 0.8 18 8818 0.0020413 0.6 1.0
01003 01 003 AL Alabama Baldwin County 1 South Region 6 East South Central Division 34 38458 0.0008841 0.8 0.4 34 46255 0.0007351 0.8 0.2
01005 01 005 AL Alabama Barbour County 1 South Region 6 East South Central Division 43 21287 0.0020200 0.8 1.0 44 18811 0.0023391 0.8 1.0
01007 01 007 AL Alabama Bibb County 1 South Region 6 East South Central Division 11 17570 0.0006261 0.4 0.2 16 17663 0.0009058 0.6 0.4
01009 01 009 AL Alabama Blount County 1 South Region 6 East South Central Division 12 16995 0.0007061 0.4 0.2 8 16546 0.0004835 0.4 0.2
01011 01 011 AL Alabama Bullock County 1 South Region 6 East South Central Division 21 10923 0.0019225 0.6 1.0 18 10173 0.0017694 0.6 0.8
svi_national_county_nmtc <- left_join(svi_national_nmtc_county_sum,
                                      svi_national_county_flags_nmtc,
                                    join_by("State" == "state", "County" == "county",
                                            "Division" == "division"))

svi_national_county_nmtc$post10_nmtc_project_cnt[is.na(svi_national_county_nmtc$post10_nmtc_project_cnt)] <- 0

svi_national_county_nmtc$county_name <- paste0(svi_national_county_nmtc$County, ", ", svi_national_county_nmtc$State)

svi_national_county_nmtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State County Division post10_nmtc_project_cnt tract_cnt post10_nmtc_project_dollars post10_nmtc_dollars_formatted fips_county_st FIPS_st FIPS_county state_name region_number region division_number flag_count10 pop10 flag_by_pop10 flag_count_quantile10 flag_pop_quantile10 flag_count20 pop20 flag_by_pop20 flag_count_quantile20 flag_pop_quantile20 county_name
AK Aleutians East Borough Pacific Division 1 1 15762500 \$15,762,500 02013 02 013 Alaska 1 West Region 9 8 3703 0.0021604 0.4 1.0 5 3389 0.0014754 0.2 0.8 Aleutians East Borough, AK
AK Aleutians West Census Area Pacific Division 0 1 0 \$0 02016 02 016 Alaska 1 West Region 9 6 1774 0.0033822 0.2 1.0 6 950 0.0063158 0.2 1.0 Aleutians West Census Area, AK
AK Anchorage Municipality Pacific Division 1 13 9800000 \$9,800,000 02020 02 020 Alaska 1 West Region 9 72 64432 0.0011175 1.0 0.4 87 69679 0.0012486 1.0 0.6 Anchorage Municipality, AK
AK Bethel Census Area Pacific Division 0 1 0 \$0 02050 02 050 Alaska 1 West Region 9 8 1386 0.0057720 0.4 1.0 10 1404 0.0071225 0.4 1.0 Bethel Census Area, AK
AK Fairbanks North Star Borough Pacific Division 0 4 0 \$0 02090 02 090 Alaska 1 West Region 9 13 17281 0.0007523 0.4 0.2 17 20094 0.0008460 0.6 0.4 Fairbanks North Star Borough, AK
AK Hoonah-Angoon Census Area Pacific Division 0 1 0 \$0 02105 02 105 Alaska 1 West Region 9 4 1888 0.0021186 0.2 1.0 5 2073 0.0024120 0.2 1.0 Hoonah-Angoon Census Area, AK
# Create data frame of NMTC eligible tracts 2020 nationally
svi_divisional_nmtc10 <- svi_divisional_nmtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county, 
    state, state_name, county, region_number, region, division_number, 
    division, F_TOTAL_10, E_TOTPOP_10) %>% rename("F_TOTAL" = "F_TOTAL_10")

# Count divisional-level SVI flags for 2010, create unified fips column
svi_2010_divisional_county_flags_nmtc <- flag_summarize(svi_divisional_nmtc10, "E_TOTPOP_10") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")

# Add suffix to flag columns 2010
colnames(svi_2010_divisional_county_flags_nmtc)[11:15] <- paste0(colnames(svi_2010_divisional_county_flags_nmtc)[11:15], "10")

# Create data frame of NMTC eligible tracts 2020 nationally
svi_divisional_nmtc20 <- svi_divisional_nmtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county, 
    state, state_name, county, region_number, region, division_number, 
    division, F_TOTAL_20, E_TOTPOP_20) %>% rename("F_TOTAL" = "F_TOTAL_20")

# Count divisional-level SVI flags for 2020, create unified fips column
svi_2020_divisional_county_flags_nmtc <- flag_summarize(svi_divisional_nmtc20, "E_TOTPOP_20") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")

# Identify needed columns for 2020
colnames(svi_2020_divisional_county_flags_nmtc)[11:15] <- paste0(colnames(svi_2020_divisional_county_flags_nmtc)[11:15], "20")

# Filter to needed columns for 2020 to avoid duplicate column column names
svi_2020_divisional_county_flags_join_nmtc <- svi_2020_divisional_county_flags_nmtc %>% ungroup() %>% select("fips_county_st", all_of(colnames(svi_2020_divisional_county_flags_nmtc)[11:15]))
 
# Join 2010 and 2020 data
svi_divisional_county_flags_nmtc <- left_join(svi_2010_divisional_county_flags_nmtc, svi_2020_divisional_county_flags_join_nmtc, join_by("fips_county_st" == "fips_county_st")) 

svi_divisional_county_flags_nmtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
fips_county_st FIPS_st FIPS_county state state_name county region_number region division_number division flag_count10 pop10 flag_by_pop10 flag_count_quantile10 flag_pop_quantile10 flag_count20 pop20 flag_by_pop20 flag_count_quantile20 flag_pop_quantile20
34001 34 001 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 202 111752 0.0018076 1.0 1.0 220 108778 0.0020225 1.0 1.0
34003 34 003 NJ New Jersey Bergen County 1 Northeast Region 2 Middle Atlantic Division 146 143973 0.0010141 1.0 0.4 165 154365 0.0010689 1.0 0.4
34005 34 005 NJ New Jersey Burlington County 1 Northeast Region 2 Middle Atlantic Division 84 62519 0.0013436 0.8 0.6 86 61250 0.0014041 0.8 0.6
34007 34 007 NJ New Jersey Camden County 1 Northeast Region 2 Middle Atlantic Division 332 183630 0.0018080 1.0 1.0 315 180659 0.0017436 1.0 0.8
34009 34 009 NJ New Jersey Cape May County 1 Northeast Region 2 Middle Atlantic Division 59 39917 0.0014781 0.8 0.8 47 39348 0.0011945 0.6 0.6
34011 34 011 NJ New Jersey Cumberland County 1 Northeast Region 2 Middle Atlantic Division 138 101151 0.0013643 0.8 0.6 135 97989 0.0013777 0.8 0.6
svi_divisional_county_nmtc <- left_join(svi_divisional_nmtc_county_sum, 
                                        svi_divisional_county_flags_nmtc,
                                    join_by("State" == "state", "County" == "county",
                                            "Division" == "division"))

svi_divisional_county_nmtc$post10_nmtc_project_cnt[is.na(svi_divisional_county_nmtc $post10_nmtc_project_cnt)] <- 0

svi_divisional_county_nmtc$county_name <- paste0(svi_divisional_county_nmtc$County, ", ", svi_divisional_county_nmtc$State)

svi_divisional_county_nmtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State County Division post10_nmtc_project_cnt tract_cnt post10_nmtc_project_dollars post10_nmtc_dollars_formatted fips_county_st FIPS_st FIPS_county state_name region_number region division_number flag_count10 pop10 flag_by_pop10 flag_count_quantile10 flag_pop_quantile10 flag_count20 pop20 flag_by_pop20 flag_count_quantile20 flag_pop_quantile20 county_name
NJ Atlantic County Middle Atlantic Division 0 29 0 \$0 34001 34 001 New Jersey 1 Northeast Region 2 202 111752 0.0018076 1.0 1.0 220 108778 0.0020225 1.0 1.0 Atlantic County, NJ
NJ Bergen County Middle Atlantic Division 1 30 10000000 \$10,000,000 34003 34 003 New Jersey 1 Northeast Region 2 146 143973 0.0010141 1.0 0.4 165 154365 0.0010689 1.0 0.4 Bergen County, NJ
NJ Burlington County Middle Atlantic Division 0 20 0 \$0 34005 34 005 New Jersey 1 Northeast Region 2 84 62519 0.0013436 0.8 0.6 86 61250 0.0014041 0.8 0.6 Burlington County, NJ
NJ Camden County Middle Atlantic Division 5 47 79664200 \$79,664,200 34007 34 007 New Jersey 1 Northeast Region 2 332 183630 0.0018080 1.0 1.0 315 180659 0.0017436 1.0 0.8 Camden County, NJ
NJ Cape May County Middle Atlantic Division 0 12 0 \$0 34009 34 009 New Jersey 1 Northeast Region 2 59 39917 0.0014781 0.8 0.8 47 39348 0.0011945 0.6 0.6 Cape May County, NJ
NJ Cumberland County Middle Atlantic Division 2 21 33187593 \$33,187,593 34011 34 011 New Jersey 1 Northeast Region 2 138 101151 0.0013643 0.8 0.6 135 97989 0.0013777 0.8 0.6 Cumberland County, NJ

LIHTC Data Wrangling

lihtc_eligible_flag <- lihtc_eligible %>% 
  select("fips", "state", "county", "stcnty", "tract", "metro", "cbsa", "qct_2010") %>% 
  rename("GEOID10" = "fips") %>% 
  mutate(lihtc_eligibility = if_else(qct_2010 == 1, "Yes", "No")) %>% 
  filter(tolower(lihtc_eligibility) == "yes") %>% 
  select(GEOID10, lihtc_eligibility)

lihtc_eligible_flag %>% head() 
## # A tibble: 6 × 2
##   GEOID10     lihtc_eligibility
##   <chr>       <chr>            
## 1 01003010600 Yes              
## 2 01005950200 Yes              
## 3 01005950300 Yes              
## 4 01005950400 Yes              
## 5 01005950600 Yes              
## 6 01005950700 Yes
lihtc_projects10 <- lihtc_projects %>% 
  filter(yr_alloc < 8000) %>% 
  filter(yr_alloc <= 2010) %>% 
  count(fips2010) %>% 
  rename("pre10_lihtc_project_cnt" = "n")

lihtc_projects10 %>% head() 
##      fips2010 pre10_lihtc_project_cnt
## 1 01001020300                       2
## 2 01001020500                       5
## 3 01001021100                       1
## 4 01003010200                       1
## 5 01003010600                       1
## 6 01003010703                       1
lihtc_dollars10 <- lihtc_projects %>% 
  filter(yr_alloc < 8000) %>% 
  filter(yr_alloc <= 2010) %>%
  select(fips2010, allocamt)

lihtc_dollars10$allocamt[is.na(lihtc_dollars10$allocamt)] <- 0

lihtc_dollars10 <- lihtc_dollars10 %>% 
  group_by(fips2010) %>% 
  summarise(pre10_lihtc_project_dollars = sum(allocamt, na.rm = TRUE))

lihtc_dollars10 %>% head() 
## # A tibble: 6 × 2
##   fips2010    pre10_lihtc_project_dollars
##   <chr>                             <dbl>
## 1 01001020300                      216593
## 2 01001020500                     2250459
## 3 01001021100                       53109
## 4 01003010200                           0
## 5 01003010600                      376889
## 6 01003010703                      717113
lihtc_projects10 <- left_join(lihtc_projects10, lihtc_dollars10, join_by(fips2010 == fips2010))

lihtc_projects10 %>% head()
##      fips2010 pre10_lihtc_project_cnt pre10_lihtc_project_dollars
## 1 01001020300                       2                      216593
## 2 01001020500                       5                     2250459
## 3 01001021100                       1                       53109
## 4 01003010200                       1                           0
## 5 01003010600                       1                      376889
## 6 01003010703                       1                      717113
lihtc_projects20 <- lihtc_projects %>% 
  filter(yr_alloc < 8000) %>% 
  filter(yr_alloc > 2010) %>% 
  filter(yr_alloc < 2021) %>% 
  count(fips2010) %>% 
  rename("post10_lihtc_project_cnt" = "n")

lihtc_projects20 %>% head() 
##      fips2010 post10_lihtc_project_cnt
## 1 01003010500                        1
## 2 01003011403                        1
## 3 01003011601                        1
## 4 01005950900                        1
## 5 01009050102                        1
## 6 01017954600                        2
lihtc_dollars20 <- lihtc_projects %>% 
  filter(yr_alloc < 8000) %>% 
  filter(yr_alloc > 2010) %>% 
  filter(yr_alloc < 2021) %>% 
  select(fips2010, allocamt)

lihtc_dollars20$allocamt[is.na(lihtc_dollars20$allocamt)] <- 0

lihtc_dollars20 <- lihtc_dollars20 %>% 
  group_by(fips2010) %>% 
  summarise(post10_lihtc_project_dollars = sum(allocamt, na.rm = TRUE))

lihtc_dollars20 %>% head() 
## # A tibble: 6 × 2
##   fips2010    post10_lihtc_project_dollars
##   <chr>                              <dbl>
## 1 01003010500                       481325
## 2 01003011403                       828342
## 3 01003011601                       887856
## 4 01005950900                       400758
## 5 01009050102                       463000
## 6 01017954600                       950192
lihtc_projects20 <- left_join(lihtc_projects20, lihtc_dollars20, join_by(fips2010 == fips2010))

lihtc_projects20 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
fips2010 post10_lihtc_project_cnt post10_lihtc_project_dollars
01003010500 1 481325
01003011403 1 828342
01003011601 1 887856
01005950900 1 400758
01009050102 1 463000
01017954600 2 950192
svi_divisional_lihtc10 <- left_join(svi_divisional, lihtc_projects10, join_by("GEOID_2010_trt" == "fips2010"))

svi_divisional_lihtc10 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 pre10_lihtc_project_cnt pre10_lihtc_project_dollars
34001000100 34 001 000100 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2907 1088 983 1127 2907 38.76849 0.8482 1 144 1433 10.048849 0.7544 1 280 435 64.36782 0.9529 1 204 548 37.22628 0.2998 0 484 983 49.23703 0.7813 1 468 1759 26.60603 0.8634 1 532 2543 20.92017 0.8978 1 250 8.599931 0.1777 0 944 32.47334 0.94170 1 186 1851 10.04862 0.2706 0 266 678 39.233038 0.8981 1 177 2611 6.779012 0.7778 1 1928 2907 66.32267 0.7743 1 1088 113 10.386029 0.6229 0 9 0.8272059 0.7223 0 80 983 8.138352 0.8657 1 265 983 26.95829 0.7354 0 0 2907 0.000000 0.3512 0 4.1451 0.8935 5 3.06590 0.7944 3 0.7743 0.7667 1 3.2975 0.8414 1 11.28280 0.8862 10 2157 941 784 1182 2157 54.79833 0.9571 1 242 1058 22.873346 0.9922 1 215 342 62.86550 0.9780 1 316 442 71.49321 0.9481 1 531 784 67.72959 0.9893 1 396 1274 31.08320 0.9497 1 266 2157 12.331943 0.9041 1 185 8.576727 0.09430 0 552 25.59110 0.8128 1 297 1605 18.504673 0.74880 0 83 510 16.27451 0.6090 0 251 2020 12.425743 0.8710 1 1852 2157 85.85999 0.8476 1 941 118 12.5398512 0.6385 0 0 0.0000000 0.3216 0 67 784 8.545918 0.8657 1 212 784 27.04082 0.7502 1 0 2157 0.0000000 0.1517 0 4.7924 0.9850 5 3.13590 0.8217 2 0.8476 0.8400 1 2.7277 0.6085 2 11.50360 0.9104 10 NA NA
34001000200 34 001 000200 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3189 2217 1473 519 3189 16.27469 0.4806 0 109 1558 6.996149 0.5179 0 573 955 60.00000 0.9323 1 199 518 38.41699 0.3261 0 772 1473 52.41005 0.8418 1 405 2579 15.70376 0.6491 0 484 3547 13.64533 0.7154 0 847 26.560050 0.9629 1 436 13.67200 0.08181 0 608 3005 20.23295 0.8466 1 42 857 4.900817 0.1204 0 422 3072 13.736979 0.8799 1 1792 3189 56.19316 0.7390 0 2217 901 40.640505 0.8693 1 0 0.0000000 0.3251 0 48 1473 3.258656 0.7064 0 250 1473 16.97217 0.6444 0 0 3189 0.000000 0.3512 0 3.2048 0.6963 1 2.89161 0.7231 3 0.7390 0.7317 0 2.8964 0.6887 1 9.73181 0.7340 5 3510 2046 1353 1021 3510 29.08832 0.7682 1 121 1852 6.533477 0.6717 0 343 696 49.28161 0.9273 1 416 657 63.31811 0.8696 1 759 1353 56.09756 0.9321 1 553 2338 23.65269 0.8871 1 354 3510 10.085470 0.8530 1 643 18.319088 0.60310 0 1002 28.54701 0.9055 1 450 2508 17.942584 0.72330 0 237 786 30.15267 0.8539 1 534 3375 15.822222 0.9062 1 2534 3510 72.19373 0.7818 1 2046 906 44.2815249 0.8690 1 0 0.0000000 0.3216 0 119 1353 8.795270 0.8711 1 324 1353 23.94678 0.7255 0 0 3510 0.0000000 0.1517 0 4.1121 0.9003 4 3.99200 0.9781 3 0.7818 0.7747 1 2.9389 0.7011 2 11.82480 0.9310 10 NA NA
34001000300 34 001 000300 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3997 1823 1357 1401 3968 35.30746 0.8164 1 382 2238 17.068811 0.9376 1 176 329 53.49544 0.8855 1 604 1028 58.75486 0.7947 1 780 1357 57.47973 0.9165 1 920 2677 34.36683 0.9346 1 1351 4149 32.56206 0.9811 1 314 7.855892 0.1437 0 937 23.44258 0.55900 0 319 3054 10.44532 0.3000 0 187 782 23.913044 0.7498 0 1080 3671 29.419777 0.9742 1 3357 3997 83.98799 0.8419 1 1823 363 19.912233 0.7535 1 0 0.0000000 0.3251 0 150 1357 11.053795 0.9136 1 651 1357 47.97347 0.8585 1 0 3997 0.000000 0.3512 0 4.5862 0.9691 5 2.72670 0.6360 1 0.8419 0.8336 1 3.2019 0.8054 3 11.35670 0.8920 10 3801 1640 1226 1857 3801 48.85556 0.9333 1 226 1800 12.555556 0.9267 1 111 280 39.64286 0.8339 1 608 946 64.27061 0.8842 1 719 1226 58.64600 0.9528 1 650 2275 28.57143 0.9337 1 1027 3801 27.019206 0.9914 1 380 9.997369 0.14040 0 1223 32.17574 0.9607 1 219 2578 8.494957 0.15680 0 268 909 29.48295 0.8456 1 940 3400 27.647059 0.9728 1 3318 3801 87.29282 0.8579 1 1640 262 15.9756098 0.6917 0 0 0.0000000 0.3216 0 124 1226 10.114192 0.8955 1 477 1226 38.90701 0.8258 1 0 3801 0.0000000 0.1517 0 4.7379 0.9829 5 3.07630 0.8013 3 0.8579 0.8501 1 2.8863 0.6781 2 11.55840 0.9150 11 NA NA
34001000400 34 001 000400 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2902 2683 1401 1172 2902 40.38594 0.8615 1 190 1389 13.678906 0.8811 1 364 707 51.48515 0.8627 1 507 694 73.05476 0.9503 1 871 1401 62.16988 0.9572 1 481 1981 24.28067 0.8339 1 674 3204 21.03620 0.8998 1 434 14.955203 0.6083 0 596 20.53756 0.33980 0 426 2607 16.34062 0.6886 0 111 652 17.024540 0.6204 0 215 2736 7.858187 0.8008 1 1792 2902 61.75052 0.7584 1 2683 2049 76.369735 0.9401 1 0 0.0000000 0.3251 0 69 1401 4.925053 0.7847 1 511 1401 36.47395 0.7992 1 72 2902 2.481048 0.8114 1 4.4335 0.9468 5 3.05790 0.7908 1 0.7584 0.7510 1 3.6605 0.9391 4 11.91030 0.9339 11 3178 2264 1390 1508 3176 47.48111 0.9246 1 172 1804 9.534368 0.8460 1 205 468 43.80342 0.8858 1 622 922 67.46204 0.9192 1 827 1390 59.49640 0.9587 1 364 2076 17.53372 0.8013 1 476 3178 14.977974 0.9390 1 483 15.198238 0.41220 0 539 16.96035 0.2484 0 319 2639 12.087912 0.38790 0 101 565 17.87611 0.6539 0 583 3022 19.291860 0.9349 1 2186 3178 68.78540 0.7658 1 2264 1609 71.0689046 0.9266 1 15 0.6625442 0.7078 0 226 1390 16.258993 0.9567 1 599 1390 43.09353 0.8474 1 20 3178 0.6293266 0.6292 0 4.4696 0.9558 5 2.63730 0.5864 1 0.7658 0.7588 1 4.0677 0.9762 3 11.94040 0.9387 10 NA NA
34001000500 34 001 000500 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3483 1241 1027 1938 3483 55.64169 0.9533 1 124 1630 7.607362 0.5830 0 227 446 50.89686 0.8549 1 478 581 82.27194 0.9799 1 705 1027 68.64654 0.9863 1 733 2077 35.29129 0.9396 1 727 3258 22.31430 0.9149 1 377 10.824002 0.3081 0 1055 30.28998 0.90140 1 268 2401 11.16202 0.3549 0 209 763 27.391874 0.7940 1 911 3077 29.606760 0.9746 1 3036 3483 87.16624 0.8550 1 1241 52 4.190169 0.4505 0 4 0.3223207 0.6567 0 113 1027 11.002921 0.9128 1 422 1027 41.09056 0.8250 1 0 3483 0.000000 0.3512 0 4.3771 0.9379 4 3.33300 0.8766 3 0.8550 0.8467 1 3.1962 0.8026 2 11.76130 0.9229 10 3385 1185 945 1682 3364 50.00000 0.9391 1 72 1577 4.565631 0.4586 0 185 468 39.52991 0.8332 1 362 477 75.89099 0.9703 1 547 945 57.88360 0.9477 1 592 1983 29.85376 0.9422 1 738 3385 21.802068 0.9817 1 240 7.090103 0.05988 0 1129 33.35303 0.9689 1 135 2256 5.984043 0.04817 0 110 717 15.34170 0.5822 0 721 3076 23.439532 0.9569 1 3029 3385 89.48301 0.8727 1 1185 9 0.7594937 0.2382 0 0 0.0000000 0.3216 0 103 945 10.899471 0.9072 1 263 945 27.83069 0.7560 1 0 3385 0.0000000 0.1517 0 4.2693 0.9283 4 2.61605 0.5709 2 0.8727 0.8648 1 2.3747 0.4357 2 10.13275 0.7921 9 NA NA
34001001100 34 001 001100 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2204 1204 1204 1185 2204 53.76588 0.9457 1 219 927 23.624596 0.9830 1 97 172 56.39535 0.9094 1 462 1032 44.76744 0.4746 0 559 1204 46.42857 0.7197 0 346 1440 24.02778 0.8306 1 469 1942 24.15036 0.9360 1 363 16.470054 0.7020 0 578 26.22505 0.74410 0 442 1558 28.36970 0.9675 1 247 396 62.373737 0.9898 1 104 2051 5.070697 0.7260 0 2118 2204 96.09800 0.9204 1 1204 570 47.342193 0.8858 1 0 0.0000000 0.3251 0 14 1204 1.162791 0.4877 0 817 1204 67.85714 0.9413 1 0 2204 0.000000 0.3512 0 4.4150 0.9451 4 4.12940 0.9805 2 0.9204 0.9114 1 2.9911 0.7243 2 12.45590 0.9597 9 1950 1267 1096 1131 1950 58.00000 0.9678 1 66 706 9.348442 0.8395 1 42 101 41.58416 0.8612 1 309 995 31.05528 0.1959 0 351 1096 32.02555 0.4782 0 510 1379 36.98332 0.9763 1 155 1950 7.948718 0.7660 1 392 20.102564 0.69880 0 447 22.92308 0.6712 0 570 1503 37.924152 0.99200 1 143 374 38.23529 0.9167 1 109 1841 5.920695 0.7464 0 1909 1950 97.89744 0.9529 1 1267 479 37.8058406 0.8464 1 0 0.0000000 0.3216 0 33 1096 3.010949 0.6446 0 743 1096 67.79197 0.9414 1 0 1950 0.0000000 0.1517 0 4.0278 0.8848 4 4.02510 0.9798 2 0.9529 0.9442 1 2.9057 0.6869 2 11.91150 0.9365 9 1 0
svi_national_lihtc10 <- left_join(svi_national, lihtc_projects10, join_by("GEOID_2010_trt" == "fips2010"))

svi_national_lihtc10 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 pre10_lihtc_project_cnt pre10_lihtc_project_dollars
01001020100 01 001 020100 AL Alabama Autauga County 1 South Region 6 East South Central Division 1809 771 696 297 1809 16.41791 0.3871 0 36 889 4.049494 0.1790 0 127 598 21.23746 0.20770 0 47 98 47.95918 0.5767 0 174 696 25.00000 0.18790 0 196 1242 15.780998 0.6093 0 186 1759 10.574190 0.3790 0 222 12.271973 0.4876 0 445 24.59923 0.5473 0 298 1335 22.32210 0.8454 1 27 545 4.954128 0.09275 0 36 1705 2.1114370 0.59040 0 385 1809 21.282477 0.4524 0 771 0 0.0000000 0.1224 0 92 11.9325551 0.8005 1 0 696 0.0000000 0.1238 0 50 696 7.183908 0.6134 0 0 1809 0 0.364 0 1.74230 0.28200 0 2.56345 0.5296 1 0.4524 0.4482 0 2.0241 0.2519 1 6.78225 0.3278 2 1941 710 693 352 1941 18.13498 0.4630 0 18 852 2.112676 0.15070 0 81 507 15.976331 0.26320 0 63 186 33.87097 0.2913 0 144 693 20.77922 0.2230 0 187 1309 14.285714 0.6928 0 187 1941 9.634209 0.6617 0 295 15.19835 0.4601 0 415 21.38073 0.4681 0 391 1526 25.62254 0.9011 1 58 555 10.45045 0.3451 0 0 1843 0.0000000 0.09479 0 437 1941 22.51417 0.3902 0 710 0 0.0000000 0.1079 0 88 12.3943662 0.8263 1 0 693 0.0000000 0.09796 0 10 693 1.443001 0.1643 0 0 1941 0.000000 0.1831 0 2.19120 0.4084 0 2.26919 0.3503 1 0.3902 0.3869 0 1.37956 0.07216 1 6.23015 0.2314 2 NA NA
01001020200 01 001 020200 AL Alabama Autauga County 1 South Region 6 East South Central Division 2020 816 730 495 1992 24.84940 0.5954 0 68 834 8.153477 0.5754 0 49 439 11.16173 0.02067 0 105 291 36.08247 0.3019 0 154 730 21.09589 0.09312 0 339 1265 26.798419 0.8392 1 313 2012 15.556660 0.6000 0 204 10.099010 0.3419 0 597 29.55446 0.8192 1 359 1515 23.69637 0.8791 1 132 456 28.947368 0.83510 1 15 1890 0.7936508 0.40130 0 1243 2020 61.534653 0.7781 1 816 0 0.0000000 0.1224 0 34 4.1666667 0.6664 0 13 730 1.7808219 0.5406 0 115 730 15.753425 0.8382 1 0 2020 0 0.364 0 2.70312 0.56650 1 3.27660 0.8614 3 0.7781 0.7709 1 2.5316 0.5047 1 9.28942 0.6832 6 1757 720 573 384 1511 25.41363 0.6427 0 29 717 4.044630 0.41320 0 33 392 8.418367 0.03542 0 116 181 64.08840 0.9086 1 149 573 26.00349 0.4041 0 139 1313 10.586443 0.5601 0 91 1533 5.936073 0.4343 0 284 16.16392 0.5169 0 325 18.49744 0.2851 0 164 1208 13.57616 0.4127 0 42 359 11.69916 0.3998 0 0 1651 0.0000000 0.09479 0 1116 1757 63.51736 0.7591 1 720 3 0.4166667 0.2470 0 5 0.6944444 0.5106 0 9 573 1.5706806 0.46880 0 57 573 9.947644 0.7317 0 212 1757 12.066022 0.9549 1 2.45440 0.4888 0 1.70929 0.1025 0 0.7591 0.7527 1 2.91300 0.68620 1 7.83579 0.4802 2 NA NA
01001020300 01 001 020300 AL Alabama Autauga County 1 South Region 6 East South Central Division 3543 1403 1287 656 3533 18.56779 0.4443 0 93 1552 5.992268 0.3724 0 273 957 28.52665 0.45780 0 178 330 53.93939 0.7152 0 451 1287 35.04274 0.49930 0 346 2260 15.309734 0.5950 0 252 3102 8.123791 0.2596 0 487 13.745413 0.5868 0 998 28.16822 0.7606 1 371 2224 16.68165 0.6266 0 126 913 13.800657 0.46350 0 0 3365 0.0000000 0.09298 0 637 3543 17.979114 0.4049 0 1403 10 0.7127584 0.3015 0 2 0.1425517 0.4407 0 0 1287 0.0000000 0.1238 0 101 1287 7.847708 0.6443 0 0 3543 0 0.364 0 2.17060 0.41010 0 2.53048 0.5116 1 0.4049 0.4011 0 1.8743 0.1942 0 6.98028 0.3576 1 3694 1464 1351 842 3694 22.79372 0.5833 0 53 1994 2.657974 0.22050 0 117 967 12.099276 0.11370 0 147 384 38.28125 0.3856 0 264 1351 19.54108 0.1827 0 317 2477 12.797739 0.6460 0 127 3673 3.457664 0.2308 0 464 12.56091 0.3088 0 929 25.14889 0.7080 0 473 2744 17.23761 0.6211 0 263 975 26.97436 0.8234 1 128 3586 3.5694367 0.70770 0 1331 3694 36.03140 0.5515 0 1464 26 1.7759563 0.3675 0 14 0.9562842 0.5389 0 35 1351 2.5906736 0.60550 0 42 1351 3.108808 0.3415 0 0 3694 0.000000 0.1831 0 1.86330 0.3063 0 3.16900 0.8380 1 0.5515 0.5468 0 2.03650 0.26830 0 7.62030 0.4460 1 2 216593
01001020400 01 001 020400 AL Alabama Autauga County 1 South Region 6 East South Central Division 4840 1957 1839 501 4840 10.35124 0.2177 0 101 2129 4.744011 0.2447 0 310 1549 20.01291 0.17080 0 89 290 30.68966 0.2044 0 399 1839 21.69657 0.10540 0 274 3280 8.353658 0.3205 0 399 4293 9.294200 0.3171 0 955 19.731405 0.8643 1 1195 24.69008 0.5530 0 625 3328 18.78005 0.7233 0 152 1374 11.062591 0.34710 0 10 4537 0.2204100 0.22560 0 297 4840 6.136364 0.1647 0 1957 33 1.6862545 0.3843 0 25 1.2774655 0.5516 0 14 1839 0.7612833 0.3564 0 19 1839 1.033170 0.1127 0 0 4840 0 0.364 0 1.20540 0.13470 0 2.71330 0.6129 1 0.1647 0.1632 0 1.7690 0.1591 0 5.85240 0.1954 1 3539 1741 1636 503 3539 14.21305 0.3472 0 39 1658 2.352232 0.17990 0 219 1290 16.976744 0.30880 0 74 346 21.38728 0.1037 0 293 1636 17.90954 0.1333 0 173 2775 6.234234 0.3351 0 169 3529 4.788892 0.3448 0 969 27.38062 0.9225 1 510 14.41085 0.1208 0 670 3019 22.19278 0.8194 1 148 1137 13.01671 0.4541 0 89 3409 2.6107363 0.64690 0 454 3539 12.82848 0.2364 0 1741 143 8.2136703 0.6028 0 0 0.0000000 0.2186 0 10 1636 0.6112469 0.28340 0 72 1636 4.400978 0.4538 0 0 3539 0.000000 0.1831 0 1.34030 0.1575 0 2.96370 0.7496 2 0.2364 0.2344 0 1.74170 0.16270 0 6.28210 0.2389 2 NA NA
01001020500 01 001 020500 AL Alabama Autauga County 1 South Region 6 East South Central Division 9938 3969 3741 1096 9938 11.02838 0.2364 0 188 4937 3.807981 0.1577 0 426 2406 17.70574 0.11050 0 528 1335 39.55056 0.3753 0 954 3741 25.50120 0.20140 0 293 5983 4.897209 0.1655 0 740 10110 7.319486 0.2211 0 837 8.422218 0.2408 0 3012 30.30791 0.8455 1 759 7155 10.60797 0.2668 0 476 2529 18.821669 0.63540 0 78 9297 0.8389803 0.41110 0 1970 9938 19.822902 0.4330 0 3969 306 7.7097506 0.6153 0 0 0.0000000 0.2198 0 7 3741 0.1871157 0.2535 0 223 3741 5.960973 0.5483 0 0 9938 0 0.364 0 0.98210 0.08468 0 2.39960 0.4381 1 0.4330 0.4290 0 2.0009 0.2430 0 5.81560 0.1905 1 10674 4504 4424 1626 10509 15.47245 0.3851 0 81 5048 1.604596 0.09431 0 321 2299 13.962592 0.17970 0 711 2125 33.45882 0.2836 0 1032 4424 23.32731 0.3109 0 531 6816 7.790493 0.4251 0 301 10046 2.996217 0.1894 0 1613 15.11149 0.4553 0 2765 25.90407 0.7494 0 1124 7281 15.43744 0.5253 0 342 2912 11.74451 0.4019 0 52 9920 0.5241935 0.35230 0 2603 10674 24.38636 0.4160 0 4504 703 15.6083481 0.7378 0 29 0.6438721 0.5037 0 37 4424 0.8363472 0.33420 0 207 4424 4.679023 0.4754 0 176 10674 1.648866 0.7598 1 1.40481 0.1743 0 2.48420 0.4802 0 0.4160 0.4125 0 2.81090 0.63730 1 7.11591 0.3654 1 5 2250459
01001020600 01 001 020600 AL Alabama Autauga County 1 South Region 6 East South Central Division 3402 1456 1308 735 3402 21.60494 0.5199 0 134 1720 7.790698 0.5436 0 242 1032 23.44961 0.28010 0 62 276 22.46377 0.1035 0 304 1308 23.24159 0.14070 0 301 2151 13.993491 0.5510 0 355 3445 10.304790 0.3656 0 386 11.346267 0.4232 0 931 27.36626 0.7200 0 440 2439 18.04018 0.6912 0 143 924 15.476190 0.52900 0 4 3254 0.1229256 0.19840 0 723 3402 21.252205 0.4519 0 1456 18 1.2362637 0.3507 0 433 29.7390110 0.9468 1 16 1308 1.2232416 0.4493 0 28 1308 2.140673 0.2298 0 0 3402 0 0.364 0 2.12080 0.39510 0 2.56180 0.5288 0 0.4519 0.4477 0 2.3406 0.4048 1 7.47510 0.4314 1 3536 1464 1330 1279 3523 36.30429 0.8215 1 34 1223 2.780049 0.23780 0 321 1111 28.892889 0.75870 1 67 219 30.59361 0.2305 0 388 1330 29.17293 0.5075 0 306 2380 12.857143 0.6480 0 415 3496 11.870709 0.7535 1 547 15.46946 0.4760 0 982 27.77149 0.8327 1 729 2514 28.99761 0.9488 1 95 880 10.79545 0.3601 0 0 3394 0.0000000 0.09479 0 985 3536 27.85633 0.4608 0 1464 0 0.0000000 0.1079 0 364 24.8633880 0.9300 1 0 1330 0.0000000 0.09796 0 17 1330 1.278196 0.1463 0 0 3536 0.000000 0.1831 0 2.96830 0.6434 2 2.71239 0.6156 2 0.4608 0.4569 0 1.46526 0.08976 1 7.60675 0.4440 5 NA NA
svi_divisional_lihtc20 <- left_join(svi_divisional_lihtc10, lihtc_projects20, join_by("GEOID_2010_trt" == "fips2010"))

svi_divisional_lihtc20 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 pre10_lihtc_project_cnt pre10_lihtc_project_dollars post10_lihtc_project_cnt post10_lihtc_project_dollars
34001000100 34 001 000100 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2907 1088 983 1127 2907 38.76849 0.8482 1 144 1433 10.048849 0.7544 1 280 435 64.36782 0.9529 1 204 548 37.22628 0.2998 0 484 983 49.23703 0.7813 1 468 1759 26.60603 0.8634 1 532 2543 20.92017 0.8978 1 250 8.599931 0.1777 0 944 32.47334 0.94170 1 186 1851 10.04862 0.2706 0 266 678 39.233038 0.8981 1 177 2611 6.779012 0.7778 1 1928 2907 66.32267 0.7743 1 1088 113 10.386029 0.6229 0 9 0.8272059 0.7223 0 80 983 8.138352 0.8657 1 265 983 26.95829 0.7354 0 0 2907 0.000000 0.3512 0 4.1451 0.8935 5 3.06590 0.7944 3 0.7743 0.7667 1 3.2975 0.8414 1 11.28280 0.8862 10 2157 941 784 1182 2157 54.79833 0.9571 1 242 1058 22.873346 0.9922 1 215 342 62.86550 0.9780 1 316 442 71.49321 0.9481 1 531 784 67.72959 0.9893 1 396 1274 31.08320 0.9497 1 266 2157 12.331943 0.9041 1 185 8.576727 0.09430 0 552 25.59110 0.8128 1 297 1605 18.504673 0.74880 0 83 510 16.27451 0.6090 0 251 2020 12.425743 0.8710 1 1852 2157 85.85999 0.8476 1 941 118 12.5398512 0.6385 0 0 0.0000000 0.3216 0 67 784 8.545918 0.8657 1 212 784 27.04082 0.7502 1 0 2157 0.0000000 0.1517 0 4.7924 0.9850 5 3.13590 0.8217 2 0.8476 0.8400 1 2.7277 0.6085 2 11.50360 0.9104 10 NA NA NA NA
34001000200 34 001 000200 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3189 2217 1473 519 3189 16.27469 0.4806 0 109 1558 6.996149 0.5179 0 573 955 60.00000 0.9323 1 199 518 38.41699 0.3261 0 772 1473 52.41005 0.8418 1 405 2579 15.70376 0.6491 0 484 3547 13.64533 0.7154 0 847 26.560050 0.9629 1 436 13.67200 0.08181 0 608 3005 20.23295 0.8466 1 42 857 4.900817 0.1204 0 422 3072 13.736979 0.8799 1 1792 3189 56.19316 0.7390 0 2217 901 40.640505 0.8693 1 0 0.0000000 0.3251 0 48 1473 3.258656 0.7064 0 250 1473 16.97217 0.6444 0 0 3189 0.000000 0.3512 0 3.2048 0.6963 1 2.89161 0.7231 3 0.7390 0.7317 0 2.8964 0.6887 1 9.73181 0.7340 5 3510 2046 1353 1021 3510 29.08832 0.7682 1 121 1852 6.533477 0.6717 0 343 696 49.28161 0.9273 1 416 657 63.31811 0.8696 1 759 1353 56.09756 0.9321 1 553 2338 23.65269 0.8871 1 354 3510 10.085470 0.8530 1 643 18.319088 0.60310 0 1002 28.54701 0.9055 1 450 2508 17.942584 0.72330 0 237 786 30.15267 0.8539 1 534 3375 15.822222 0.9062 1 2534 3510 72.19373 0.7818 1 2046 906 44.2815249 0.8690 1 0 0.0000000 0.3216 0 119 1353 8.795270 0.8711 1 324 1353 23.94678 0.7255 0 0 3510 0.0000000 0.1517 0 4.1121 0.9003 4 3.99200 0.9781 3 0.7818 0.7747 1 2.9389 0.7011 2 11.82480 0.9310 10 NA NA NA NA
34001000300 34 001 000300 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3997 1823 1357 1401 3968 35.30746 0.8164 1 382 2238 17.068811 0.9376 1 176 329 53.49544 0.8855 1 604 1028 58.75486 0.7947 1 780 1357 57.47973 0.9165 1 920 2677 34.36683 0.9346 1 1351 4149 32.56206 0.9811 1 314 7.855892 0.1437 0 937 23.44258 0.55900 0 319 3054 10.44532 0.3000 0 187 782 23.913044 0.7498 0 1080 3671 29.419777 0.9742 1 3357 3997 83.98799 0.8419 1 1823 363 19.912233 0.7535 1 0 0.0000000 0.3251 0 150 1357 11.053795 0.9136 1 651 1357 47.97347 0.8585 1 0 3997 0.000000 0.3512 0 4.5862 0.9691 5 2.72670 0.6360 1 0.8419 0.8336 1 3.2019 0.8054 3 11.35670 0.8920 10 3801 1640 1226 1857 3801 48.85556 0.9333 1 226 1800 12.555556 0.9267 1 111 280 39.64286 0.8339 1 608 946 64.27061 0.8842 1 719 1226 58.64600 0.9528 1 650 2275 28.57143 0.9337 1 1027 3801 27.019206 0.9914 1 380 9.997369 0.14040 0 1223 32.17574 0.9607 1 219 2578 8.494957 0.15680 0 268 909 29.48295 0.8456 1 940 3400 27.647059 0.9728 1 3318 3801 87.29282 0.8579 1 1640 262 15.9756098 0.6917 0 0 0.0000000 0.3216 0 124 1226 10.114192 0.8955 1 477 1226 38.90701 0.8258 1 0 3801 0.0000000 0.1517 0 4.7379 0.9829 5 3.07630 0.8013 3 0.8579 0.8501 1 2.8863 0.6781 2 11.55840 0.9150 11 NA NA NA NA
34001000400 34 001 000400 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2902 2683 1401 1172 2902 40.38594 0.8615 1 190 1389 13.678906 0.8811 1 364 707 51.48515 0.8627 1 507 694 73.05476 0.9503 1 871 1401 62.16988 0.9572 1 481 1981 24.28067 0.8339 1 674 3204 21.03620 0.8998 1 434 14.955203 0.6083 0 596 20.53756 0.33980 0 426 2607 16.34062 0.6886 0 111 652 17.024540 0.6204 0 215 2736 7.858187 0.8008 1 1792 2902 61.75052 0.7584 1 2683 2049 76.369735 0.9401 1 0 0.0000000 0.3251 0 69 1401 4.925053 0.7847 1 511 1401 36.47395 0.7992 1 72 2902 2.481048 0.8114 1 4.4335 0.9468 5 3.05790 0.7908 1 0.7584 0.7510 1 3.6605 0.9391 4 11.91030 0.9339 11 3178 2264 1390 1508 3176 47.48111 0.9246 1 172 1804 9.534368 0.8460 1 205 468 43.80342 0.8858 1 622 922 67.46204 0.9192 1 827 1390 59.49640 0.9587 1 364 2076 17.53372 0.8013 1 476 3178 14.977974 0.9390 1 483 15.198238 0.41220 0 539 16.96035 0.2484 0 319 2639 12.087912 0.38790 0 101 565 17.87611 0.6539 0 583 3022 19.291860 0.9349 1 2186 3178 68.78540 0.7658 1 2264 1609 71.0689046 0.9266 1 15 0.6625442 0.7078 0 226 1390 16.258993 0.9567 1 599 1390 43.09353 0.8474 1 20 3178 0.6293266 0.6292 0 4.4696 0.9558 5 2.63730 0.5864 1 0.7658 0.7588 1 4.0677 0.9762 3 11.94040 0.9387 10 NA NA NA NA
34001000500 34 001 000500 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3483 1241 1027 1938 3483 55.64169 0.9533 1 124 1630 7.607362 0.5830 0 227 446 50.89686 0.8549 1 478 581 82.27194 0.9799 1 705 1027 68.64654 0.9863 1 733 2077 35.29129 0.9396 1 727 3258 22.31430 0.9149 1 377 10.824002 0.3081 0 1055 30.28998 0.90140 1 268 2401 11.16202 0.3549 0 209 763 27.391874 0.7940 1 911 3077 29.606760 0.9746 1 3036 3483 87.16624 0.8550 1 1241 52 4.190169 0.4505 0 4 0.3223207 0.6567 0 113 1027 11.002921 0.9128 1 422 1027 41.09056 0.8250 1 0 3483 0.000000 0.3512 0 4.3771 0.9379 4 3.33300 0.8766 3 0.8550 0.8467 1 3.1962 0.8026 2 11.76130 0.9229 10 3385 1185 945 1682 3364 50.00000 0.9391 1 72 1577 4.565631 0.4586 0 185 468 39.52991 0.8332 1 362 477 75.89099 0.9703 1 547 945 57.88360 0.9477 1 592 1983 29.85376 0.9422 1 738 3385 21.802068 0.9817 1 240 7.090103 0.05988 0 1129 33.35303 0.9689 1 135 2256 5.984043 0.04817 0 110 717 15.34170 0.5822 0 721 3076 23.439532 0.9569 1 3029 3385 89.48301 0.8727 1 1185 9 0.7594937 0.2382 0 0 0.0000000 0.3216 0 103 945 10.899471 0.9072 1 263 945 27.83069 0.7560 1 0 3385 0.0000000 0.1517 0 4.2693 0.9283 4 2.61605 0.5709 2 0.8727 0.8648 1 2.3747 0.4357 2 10.13275 0.7921 9 NA NA NA NA
34001001100 34 001 001100 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2204 1204 1204 1185 2204 53.76588 0.9457 1 219 927 23.624596 0.9830 1 97 172 56.39535 0.9094 1 462 1032 44.76744 0.4746 0 559 1204 46.42857 0.7197 0 346 1440 24.02778 0.8306 1 469 1942 24.15036 0.9360 1 363 16.470054 0.7020 0 578 26.22505 0.74410 0 442 1558 28.36970 0.9675 1 247 396 62.373737 0.9898 1 104 2051 5.070697 0.7260 0 2118 2204 96.09800 0.9204 1 1204 570 47.342193 0.8858 1 0 0.0000000 0.3251 0 14 1204 1.162791 0.4877 0 817 1204 67.85714 0.9413 1 0 2204 0.000000 0.3512 0 4.4150 0.9451 4 4.12940 0.9805 2 0.9204 0.9114 1 2.9911 0.7243 2 12.45590 0.9597 9 1950 1267 1096 1131 1950 58.00000 0.9678 1 66 706 9.348442 0.8395 1 42 101 41.58416 0.8612 1 309 995 31.05528 0.1959 0 351 1096 32.02555 0.4782 0 510 1379 36.98332 0.9763 1 155 1950 7.948718 0.7660 1 392 20.102564 0.69880 0 447 22.92308 0.6712 0 570 1503 37.924152 0.99200 1 143 374 38.23529 0.9167 1 109 1841 5.920695 0.7464 0 1909 1950 97.89744 0.9529 1 1267 479 37.8058406 0.8464 1 0 0.0000000 0.3216 0 33 1096 3.010949 0.6446 0 743 1096 67.79197 0.9414 1 0 1950 0.0000000 0.1517 0 4.0278 0.8848 4 4.02510 0.9798 2 0.9529 0.9442 1 2.9057 0.6869 2 11.91150 0.9365 9 1 0 1 1290441
svi_national_lihtc20 <- left_join(svi_national_lihtc10, lihtc_projects20, join_by("GEOID_2010_trt" == "fips2010"))

svi_national_lihtc20 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 pre10_lihtc_project_cnt pre10_lihtc_project_dollars post10_lihtc_project_cnt post10_lihtc_project_dollars
01001020100 01 001 020100 AL Alabama Autauga County 1 South Region 6 East South Central Division 1809 771 696 297 1809 16.41791 0.3871 0 36 889 4.049494 0.1790 0 127 598 21.23746 0.20770 0 47 98 47.95918 0.5767 0 174 696 25.00000 0.18790 0 196 1242 15.780998 0.6093 0 186 1759 10.574190 0.3790 0 222 12.271973 0.4876 0 445 24.59923 0.5473 0 298 1335 22.32210 0.8454 1 27 545 4.954128 0.09275 0 36 1705 2.1114370 0.59040 0 385 1809 21.282477 0.4524 0 771 0 0.0000000 0.1224 0 92 11.9325551 0.8005 1 0 696 0.0000000 0.1238 0 50 696 7.183908 0.6134 0 0 1809 0 0.364 0 1.74230 0.28200 0 2.56345 0.5296 1 0.4524 0.4482 0 2.0241 0.2519 1 6.78225 0.3278 2 1941 710 693 352 1941 18.13498 0.4630 0 18 852 2.112676 0.15070 0 81 507 15.976331 0.26320 0 63 186 33.87097 0.2913 0 144 693 20.77922 0.2230 0 187 1309 14.285714 0.6928 0 187 1941 9.634209 0.6617 0 295 15.19835 0.4601 0 415 21.38073 0.4681 0 391 1526 25.62254 0.9011 1 58 555 10.45045 0.3451 0 0 1843 0.0000000 0.09479 0 437 1941 22.51417 0.3902 0 710 0 0.0000000 0.1079 0 88 12.3943662 0.8263 1 0 693 0.0000000 0.09796 0 10 693 1.443001 0.1643 0 0 1941 0.000000 0.1831 0 2.19120 0.4084 0 2.26919 0.3503 1 0.3902 0.3869 0 1.37956 0.07216 1 6.23015 0.2314 2 NA NA NA NA
01001020200 01 001 020200 AL Alabama Autauga County 1 South Region 6 East South Central Division 2020 816 730 495 1992 24.84940 0.5954 0 68 834 8.153477 0.5754 0 49 439 11.16173 0.02067 0 105 291 36.08247 0.3019 0 154 730 21.09589 0.09312 0 339 1265 26.798419 0.8392 1 313 2012 15.556660 0.6000 0 204 10.099010 0.3419 0 597 29.55446 0.8192 1 359 1515 23.69637 0.8791 1 132 456 28.947368 0.83510 1 15 1890 0.7936508 0.40130 0 1243 2020 61.534653 0.7781 1 816 0 0.0000000 0.1224 0 34 4.1666667 0.6664 0 13 730 1.7808219 0.5406 0 115 730 15.753425 0.8382 1 0 2020 0 0.364 0 2.70312 0.56650 1 3.27660 0.8614 3 0.7781 0.7709 1 2.5316 0.5047 1 9.28942 0.6832 6 1757 720 573 384 1511 25.41363 0.6427 0 29 717 4.044630 0.41320 0 33 392 8.418367 0.03542 0 116 181 64.08840 0.9086 1 149 573 26.00349 0.4041 0 139 1313 10.586443 0.5601 0 91 1533 5.936073 0.4343 0 284 16.16392 0.5169 0 325 18.49744 0.2851 0 164 1208 13.57616 0.4127 0 42 359 11.69916 0.3998 0 0 1651 0.0000000 0.09479 0 1116 1757 63.51736 0.7591 1 720 3 0.4166667 0.2470 0 5 0.6944444 0.5106 0 9 573 1.5706806 0.46880 0 57 573 9.947644 0.7317 0 212 1757 12.066022 0.9549 1 2.45440 0.4888 0 1.70929 0.1025 0 0.7591 0.7527 1 2.91300 0.68620 1 7.83579 0.4802 2 NA NA NA NA
01001020300 01 001 020300 AL Alabama Autauga County 1 South Region 6 East South Central Division 3543 1403 1287 656 3533 18.56779 0.4443 0 93 1552 5.992268 0.3724 0 273 957 28.52665 0.45780 0 178 330 53.93939 0.7152 0 451 1287 35.04274 0.49930 0 346 2260 15.309734 0.5950 0 252 3102 8.123791 0.2596 0 487 13.745413 0.5868 0 998 28.16822 0.7606 1 371 2224 16.68165 0.6266 0 126 913 13.800657 0.46350 0 0 3365 0.0000000 0.09298 0 637 3543 17.979114 0.4049 0 1403 10 0.7127584 0.3015 0 2 0.1425517 0.4407 0 0 1287 0.0000000 0.1238 0 101 1287 7.847708 0.6443 0 0 3543 0 0.364 0 2.17060 0.41010 0 2.53048 0.5116 1 0.4049 0.4011 0 1.8743 0.1942 0 6.98028 0.3576 1 3694 1464 1351 842 3694 22.79372 0.5833 0 53 1994 2.657974 0.22050 0 117 967 12.099276 0.11370 0 147 384 38.28125 0.3856 0 264 1351 19.54108 0.1827 0 317 2477 12.797739 0.6460 0 127 3673 3.457664 0.2308 0 464 12.56091 0.3088 0 929 25.14889 0.7080 0 473 2744 17.23761 0.6211 0 263 975 26.97436 0.8234 1 128 3586 3.5694367 0.70770 0 1331 3694 36.03140 0.5515 0 1464 26 1.7759563 0.3675 0 14 0.9562842 0.5389 0 35 1351 2.5906736 0.60550 0 42 1351 3.108808 0.3415 0 0 3694 0.000000 0.1831 0 1.86330 0.3063 0 3.16900 0.8380 1 0.5515 0.5468 0 2.03650 0.26830 0 7.62030 0.4460 1 2 216593 NA NA
01001020400 01 001 020400 AL Alabama Autauga County 1 South Region 6 East South Central Division 4840 1957 1839 501 4840 10.35124 0.2177 0 101 2129 4.744011 0.2447 0 310 1549 20.01291 0.17080 0 89 290 30.68966 0.2044 0 399 1839 21.69657 0.10540 0 274 3280 8.353658 0.3205 0 399 4293 9.294200 0.3171 0 955 19.731405 0.8643 1 1195 24.69008 0.5530 0 625 3328 18.78005 0.7233 0 152 1374 11.062591 0.34710 0 10 4537 0.2204100 0.22560 0 297 4840 6.136364 0.1647 0 1957 33 1.6862545 0.3843 0 25 1.2774655 0.5516 0 14 1839 0.7612833 0.3564 0 19 1839 1.033170 0.1127 0 0 4840 0 0.364 0 1.20540 0.13470 0 2.71330 0.6129 1 0.1647 0.1632 0 1.7690 0.1591 0 5.85240 0.1954 1 3539 1741 1636 503 3539 14.21305 0.3472 0 39 1658 2.352232 0.17990 0 219 1290 16.976744 0.30880 0 74 346 21.38728 0.1037 0 293 1636 17.90954 0.1333 0 173 2775 6.234234 0.3351 0 169 3529 4.788892 0.3448 0 969 27.38062 0.9225 1 510 14.41085 0.1208 0 670 3019 22.19278 0.8194 1 148 1137 13.01671 0.4541 0 89 3409 2.6107363 0.64690 0 454 3539 12.82848 0.2364 0 1741 143 8.2136703 0.6028 0 0 0.0000000 0.2186 0 10 1636 0.6112469 0.28340 0 72 1636 4.400978 0.4538 0 0 3539 0.000000 0.1831 0 1.34030 0.1575 0 2.96370 0.7496 2 0.2364 0.2344 0 1.74170 0.16270 0 6.28210 0.2389 2 NA NA NA NA
01001020500 01 001 020500 AL Alabama Autauga County 1 South Region 6 East South Central Division 9938 3969 3741 1096 9938 11.02838 0.2364 0 188 4937 3.807981 0.1577 0 426 2406 17.70574 0.11050 0 528 1335 39.55056 0.3753 0 954 3741 25.50120 0.20140 0 293 5983 4.897209 0.1655 0 740 10110 7.319486 0.2211 0 837 8.422218 0.2408 0 3012 30.30791 0.8455 1 759 7155 10.60797 0.2668 0 476 2529 18.821669 0.63540 0 78 9297 0.8389803 0.41110 0 1970 9938 19.822902 0.4330 0 3969 306 7.7097506 0.6153 0 0 0.0000000 0.2198 0 7 3741 0.1871157 0.2535 0 223 3741 5.960973 0.5483 0 0 9938 0 0.364 0 0.98210 0.08468 0 2.39960 0.4381 1 0.4330 0.4290 0 2.0009 0.2430 0 5.81560 0.1905 1 10674 4504 4424 1626 10509 15.47245 0.3851 0 81 5048 1.604596 0.09431 0 321 2299 13.962592 0.17970 0 711 2125 33.45882 0.2836 0 1032 4424 23.32731 0.3109 0 531 6816 7.790493 0.4251 0 301 10046 2.996217 0.1894 0 1613 15.11149 0.4553 0 2765 25.90407 0.7494 0 1124 7281 15.43744 0.5253 0 342 2912 11.74451 0.4019 0 52 9920 0.5241935 0.35230 0 2603 10674 24.38636 0.4160 0 4504 703 15.6083481 0.7378 0 29 0.6438721 0.5037 0 37 4424 0.8363472 0.33420 0 207 4424 4.679023 0.4754 0 176 10674 1.648866 0.7598 1 1.40481 0.1743 0 2.48420 0.4802 0 0.4160 0.4125 0 2.81090 0.63730 1 7.11591 0.3654 1 5 2250459 NA NA
01001020600 01 001 020600 AL Alabama Autauga County 1 South Region 6 East South Central Division 3402 1456 1308 735 3402 21.60494 0.5199 0 134 1720 7.790698 0.5436 0 242 1032 23.44961 0.28010 0 62 276 22.46377 0.1035 0 304 1308 23.24159 0.14070 0 301 2151 13.993491 0.5510 0 355 3445 10.304790 0.3656 0 386 11.346267 0.4232 0 931 27.36626 0.7200 0 440 2439 18.04018 0.6912 0 143 924 15.476190 0.52900 0 4 3254 0.1229256 0.19840 0 723 3402 21.252205 0.4519 0 1456 18 1.2362637 0.3507 0 433 29.7390110 0.9468 1 16 1308 1.2232416 0.4493 0 28 1308 2.140673 0.2298 0 0 3402 0 0.364 0 2.12080 0.39510 0 2.56180 0.5288 0 0.4519 0.4477 0 2.3406 0.4048 1 7.47510 0.4314 1 3536 1464 1330 1279 3523 36.30429 0.8215 1 34 1223 2.780049 0.23780 0 321 1111 28.892889 0.75870 1 67 219 30.59361 0.2305 0 388 1330 29.17293 0.5075 0 306 2380 12.857143 0.6480 0 415 3496 11.870709 0.7535 1 547 15.46946 0.4760 0 982 27.77149 0.8327 1 729 2514 28.99761 0.9488 1 95 880 10.79545 0.3601 0 0 3394 0.0000000 0.09479 0 985 3536 27.85633 0.4608 0 1464 0 0.0000000 0.1079 0 364 24.8633880 0.9300 1 0 1330 0.0000000 0.09796 0 17 1330 1.278196 0.1463 0 0 3536 0.000000 0.1831 0 2.96830 0.6434 2 2.71239 0.6156 2 0.4608 0.4569 0 1.46526 0.08976 1 7.60675 0.4440 5 NA NA NA NA
svi_divisional_lihtc20 <- svi_divisional_lihtc20 %>% 
  filter(is.na(pre10_lihtc_project_cnt)) %>% 
  filter(post10_lihtc_project_cnt >= 1) %>% 
  select(GEOID_2010_trt, pre10_lihtc_project_cnt, pre10_lihtc_project_dollars, post10_lihtc_project_cnt, post10_lihtc_project_dollars)

# View data
svi_divisional_lihtc20 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt pre10_lihtc_project_cnt pre10_lihtc_project_dollars post10_lihtc_project_cnt post10_lihtc_project_dollars
34001001500 NA NA 1 1497998
34001010600 NA NA 1 1369830
34001011803 NA NA 1 0
34003002200 NA NA 1 0
34003007001 NA NA 1 601714
34003013001 NA NA 1 307351
svi_national_lihtc20 <- svi_national_lihtc20 %>% 
  filter(is.na(pre10_lihtc_project_cnt)) %>% 
  filter(post10_lihtc_project_cnt >= 1) %>% 
  select(GEOID_2010_trt, pre10_lihtc_project_cnt, pre10_lihtc_project_dollars, post10_lihtc_project_cnt, post10_lihtc_project_dollars)

# View data
svi_national_lihtc20 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt pre10_lihtc_project_cnt pre10_lihtc_project_dollars post10_lihtc_project_cnt post10_lihtc_project_dollars
01003010500 NA NA 1 481325
01003011601 NA NA 1 887856
01017954600 NA NA 2 950192
01021060101 NA NA 1 812048
01039962600 NA NA 1 434742
01043964900 NA NA 1 1046201
# Filter SVI divisional data to remove all tracts that had a project in 2010 or before:
svi_divisional_lihtc <-  svi_divisional %>% 
  filter(! GEOID_2010_trt %in% lihtc_projects10$fips2010)

# Merge SVI divisional data with post 2010 project data, create flag for projects (1 for tracts that have LIHTC project, 0 for those that do not):
svi_divisional_lihtc <- left_join(svi_divisional_lihtc, 
                                  svi_divisional_lihtc20, 
                                  join_by("GEOID_2010_trt" == "GEOID_2010_trt")) %>% 
                        mutate(pre10_lihtc_project_cnt = replace_na(pre10_lihtc_project_cnt, 0),
                               post10_lihtc_project_cnt = replace_na(post10_lihtc_project_cnt, 0),
                               pre10_lihtc_project_dollars = replace_na(pre10_lihtc_project_dollars, 0),
                               post10_lihtc_project_dollars = replace_na(post10_lihtc_project_dollars, 0),
                               lihtc_flag = if_else(post10_lihtc_project_cnt >= 1, 1, 0))

# Finally, we want to filter our dataset to only have tracts that are eligible for the LIHTC program and that have SVI data:
svi_divisional_lihtc <- left_join(svi_divisional_lihtc, lihtc_eligible_flag, 
                                  join_by("GEOID_2010_trt" == "GEOID10")) %>%
                        filter(tolower(lihtc_eligibility) == "yes") %>%
                        filter(!is.na(F_TOTAL_10)) %>% 
                        filter(!is.na(F_TOTAL_20)) 


# View data
svi_divisional_lihtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 pre10_lihtc_project_cnt pre10_lihtc_project_dollars post10_lihtc_project_cnt post10_lihtc_project_dollars lihtc_flag lihtc_eligibility
34001001400 34 001 001400 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3736 1893 1503 2135 3736 57.14668 0.9592 1 411 1635 25.137615 0.9866 1 267 401 66.58354 0.9617 1 715 1102 64.88203 0.8844 1 982 1503 65.33599 0.9764 1 511 1696 30.129717 0.90050 1 527 4199 12.5506073 0.672800 0 269 7.200214 0.115100 0 1598 42.77302 0.9935 1 345 2252 15.319716 0.63090 0 787 941 83.63443 0.9990 1 63 3192 1.973684 0.54480 0 3463 3736 92.69272 0.8905 1 1893 427 22.556788 0.7770 1 0 0.000000 0.3251 0 22 1503 1.463739 0.5339 0 705 1503 46.90619 0.85330 1 0 3736 0.000000 0.3512 0 4.495500 0.9585 4 3.283300 0.8640 2 0.8905 0.8818 1 2.84050 0.66710 2 11.509800 0.9048 9 3812 1724 1549 2291 3754 61.028236 0.9760 1 380 1547 24.563672 0.9934 1 117 240 48.75000 0.9237 1 753 1309 57.52483 0.7816 1 870 1549 56.16527 0.9326 1 472 1913 24.673288 0.8987 1 294 3802 7.7327722 0.7558 1 363 9.52256 0.123100 0 1463 38.37880 0.9885 1 508 2339.000 21.718683 0.85640 1 564 948.000 59.49367 0.9910 1 201 3159 6.3627730 0.7613 1 3389 3812.000 88.90346 0.8683 1 1724 571 33.1206497 0.8294 1 0 0 0.3216 0 83 1549 5.358296 0.7754 1 661 1549.000 42.672692 0.8448 1 10 3812 0.2623295 0.4739 0 4.5565 0.9673 5 3.720300 0.9522 4 0.8683 0.8605 1 3.2451 0.81590 3 12.390200 0.9595 13 0 0 0 0 0 Yes
34001001500 34 001 001500 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 1074 901 752 656 1074 61.08007 0.9700 1 43 270 15.925926 0.9242 1 30 70 42.85714 0.7276 0 366 682 53.66569 0.6910 0 396 752 52.65957 0.8458 1 266 921 28.881650 0.88860 1 121 1064 11.3721805 0.613100 0 385 35.847300 0.990200 1 129 12.01117 0.0617 0 321 993 32.326284 0.98460 1 62 195 31.79487 0.8408 1 125 1050 11.904762 0.85620 1 965 1074 89.85102 0.8717 1 901 636 70.588235 0.9304 1 0 0.000000 0.3251 0 10 752 1.329787 0.5133 0 626 752 83.24468 0.98880 1 0 1074 0.000000 0.3512 0 4.241700 0.9134 4 3.733500 0.9515 4 0.8717 0.8632 1 3.10880 0.77090 2 11.955700 0.9362 11 1601 976 810 1001 1601 62.523423 0.9797 1 204 563 36.234458 0.9989 1 74 110 67.27273 0.9848 1 224 700 32.00000 0.2097 0 298 810 36.79012 0.6089 0 379 1145 33.100437 0.9610 1 272 1601 16.9893816 0.9572 1 451 28.16989 0.936300 1 251 15.67770 0.1835 0 411 1350.000 30.444444 0.97330 1 196 446.000 43.94619 0.9511 1 220 1532 14.3603133 0.8929 1 1435 1601.000 89.63148 0.8738 1 976 451 46.2090164 0.8742 1 0 0 0.3216 0 24 810 2.962963 0.6412 0 546 810.000 67.407407 0.9401 1 15 1601 0.9369144 0.6832 0 4.5057 0.9617 4 3.937100 0.9752 4 0.8738 0.8659 1 3.4603 0.87740 2 12.776900 0.9705 11 0 0 1 1497998 1 Yes
34001002400 34 001 002400 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 3129 1759 1375 1916 3129 61.23362 0.9705 1 205 1075 19.069767 0.9574 1 28 60 46.66667 0.7987 1 670 1315 50.95057 0.6297 0 698 1375 50.76364 0.8102 1 632 2059 30.694512 0.90660 1 461 2365 19.4926004 0.873700 1 539 17.225951 0.744100 0 850 27.16523 0.7907 1 575 1736 33.122120 0.98650 1 237 594 39.89899 0.9035 1 312 2663 11.716110 0.85490 1 2357 3129 75.32758 0.8038 1 1759 1091 62.023877 0.9176 1 29 1.648664 0.7742 1 57 1375 4.145454 0.7529 1 696 1375 50.61818 0.87140 1 209 3129 6.679450 0.9003 1 4.518400 0.9608 5 4.279700 0.9831 4 0.8038 0.7960 1 4.21640 0.98320 5 13.818300 0.9835 15 2614 1726 1217 1579 2612 60.451761 0.9744 1 290 1171 24.765158 0.9939 1 69 127 54.33071 0.9521 1 538 1090 49.35780 0.5970 0 607 1217 49.87675 0.8624 1 697 1998 34.884885 0.9695 1 551 2614 21.0788064 0.9797 1 516 19.73986 0.679400 0 503 19.24254 0.3999 0 576 2111.000 27.285647 0.95060 1 257 567.000 45.32628 0.9571 1 556 2368 23.4797297 0.9570 1 2029 2614.000 77.62050 0.8058 1 1726 1166 67.5550406 0.9204 1 0 0 0.3216 0 115 1217 9.449466 0.8840 1 673 1217.000 55.299918 0.8978 1 223 2614 8.5309870 0.9307 1 4.7799 0.9845 5 3.944000 0.9756 3 0.8058 0.7985 1 3.9545 0.96510 4 13.484200 0.9845 13 0 0 0 0 0 Yes
34003015400 34 003 015400 NJ New Jersey Bergen County 1 Northeast Region 2 Middle Atlantic Division 5086 2258 2100 1485 5063 29.33044 0.7447 0 195 2873 6.787330 0.4938 0 223 478 46.65272 0.7984 1 876 1622 54.00740 0.6974 0 1099 2100 52.33333 0.8405 1 640 3682 17.381858 0.70160 0 1579 6178 25.5584331 0.949900 1 603 11.856075 0.377400 0 961 18.89501 0.2410 0 534 5000 10.680000 0.31600 0 254 1232 20.61688 0.6975 0 681 4763 14.297712 0.88510 1 3916 5086 76.99567 0.8096 1 2258 1028 45.527015 0.8820 1 0 0.000000 0.3251 0 28 2100 1.333333 0.5139 0 643 2100 30.61905 0.76370 1 57 5086 1.120724 0.7485 0 3.730500 0.8072 2 2.517000 0.5136 1 0.8096 0.8017 1 3.23320 0.81730 2 10.290300 0.7914 6 7543 3570 3054 1638 7543 21.715498 0.6364 0 320 4251 7.527641 0.7462 0 238 752 31.64894 0.6832 0 1211 2302 52.60643 0.6776 0 1449 3054 47.44597 0.8252 1 877 5631 15.574498 0.7611 1 1093 7543 14.4902559 0.9339 1 981 13.00544 0.282700 0 1174 15.56410 0.1785 0 756 6369.000 11.869995 0.37380 0 303 2013.000 15.05216 0.5737 0 970 7103 13.6562016 0.8846 1 5610 7543.000 74.37359 0.7916 1 3570 1871 52.4089636 0.8898 1 0 0 0.3216 0 258 3054 8.447937 0.8637 1 301 3054.000 9.855927 0.5207 0 15 7543 0.1988599 0.4315 0 3.9028 0.8603 3 2.293300 0.3701 1 0.7916 0.7845 1 3.0273 0.73680 2 10.015000 0.7805 7 0 0 0 0 0 Yes
34003018100 34 003 018100 NJ New Jersey Bergen County 1 Northeast Region 2 Middle Atlantic Division 6907 2665 2569 1865 6863 27.17470 0.7140 0 242 3781 6.400423 0.4509 0 434 834 52.03837 0.8694 1 1123 1735 64.72622 0.8830 1 1557 2569 60.60724 0.9450 1 1521 4649 32.716713 0.92270 1 2703 7124 37.9421673 0.992200 1 1024 14.825539 0.598800 0 1336 19.34270 0.2674 0 452 5848 7.729138 0.11920 0 363 1614 22.49071 0.7280 0 1324 6571 20.149140 0.93510 1 4209 6907 60.93818 0.7551 1 2665 517 19.399625 0.7487 0 0 0.000000 0.3251 0 136 2569 5.293889 0.7960 1 1043 2569 40.59945 0.82350 1 0 6907 0.000000 0.3512 0 4.024800 0.8697 3 2.648500 0.5885 1 0.7551 0.7477 1 3.04450 0.74620 2 10.472900 0.8112 7 7668 2912 2816 1803 7664 23.525574 0.6750 0 370 4727 7.827375 0.7646 1 441 819 53.84615 0.9501 1 1122 1997 56.18428 0.7544 1 1563 2816 55.50426 0.9274 1 1879 5775 32.536797 0.9576 1 1695 7668 22.1048513 0.9829 1 1041 13.57590 0.316600 0 1193 15.55816 0.1784 0 711 6474.819 10.981001 0.31250 0 197 1914.175 10.29164 0.3928 0 2045 7161 28.5574640 0.9756 1 5637 7667.630 73.51685 0.7875 1 2912 806 27.6785714 0.7973 1 0 0 0.3216 0 150 2816 5.326704 0.7742 1 833 2816.042 29.580522 0.7679 1 10 7668 0.1304121 0.3642 0 4.3075 0.9336 4 2.175900 0.2971 1 0.7875 0.7803 1 3.0252 0.73590 3 10.296100 0.8061 9 0 0 0 0 0 Yes
34005702101 34 005 702101 NJ New Jersey Burlington County 1 Northeast Region 2 Middle Atlantic Division 1637 702 483 445 1637 27.18387 0.7142 0 63 456 13.815789 0.8857 1 0 0 NaN NA NA 222 483 45.96273 0.5037 0 222 483 45.96273 0.7085 0 31 903 3.433001 0.08742 0 14 1965 0.7124682 0.008765 0 0 0.000000 0.002836 0 696 42.51680 0.9928 1 62 898 6.904232 0.08018 0 103 452 22.78761 0.7331 0 0 1379 0.000000 0.07335 0 248 1637 15.14966 0.4224 0 702 25 3.561254 0.4247 0 0 0.000000 0.3251 0 0 483 0.000000 0.1459 0 0 483 0.00000 0.01044 0 0 1637 0.000000 0.3512 0 2.404585 0.4890 1 1.882266 0.1557 1 0.4224 0.4183 0 1.25734 0.03853 0 5.966591 0.2021 2 3997 1271 1235 304 3996 7.607608 0.1919 0 46 901 5.105438 0.5252 0 0 0 NaN NA NA 731 1235 59.19028 0.8107 1 731 1235 59.19028 0.9566 1 49 1973 2.483528 0.0993 0 27 3057 0.8832188 0.0568 0 0 0.00000 0.001592 0 1651 41.30598 0.9924 1 58 1412.011 4.107616 0.01556 0 91 1092.793 8.32729 0.3046 0 32 3347 0.9560801 0.3989 0 1411 3996.883 35.30251 0.5750 0 1271 10 0.7867821 0.2414 0 0 0 0.3216 0 27 1235 2.186235 0.5699 0 11 1234.974 0.890707 0.0533 0 0 3997 0.0000000 0.1517 0 1.8298 0.3066 1 1.713052 0.1034 1 0.5750 0.5698 0 1.3379 0.06021 0 5.455752 0.1329 2 0 0 0 0 0 Yes
# Filter SVI national data to remove all tracts that had a project in 2010 or before:
svi_national_lihtc <-  svi_national %>% 
  filter(! GEOID_2010_trt %in% lihtc_projects10$fips2010)

# Merge SVI national data with post 2010 project data, create flag for projects (1 for tracts that have LIHTC project, 0 for those that do not):
svi_national_lihtc <- left_join(svi_national_lihtc, 
                                  svi_national_lihtc20, 
                                  join_by("GEOID_2010_trt" == "GEOID_2010_trt")) %>% 
                        mutate(pre10_lihtc_project_cnt = replace_na(pre10_lihtc_project_cnt, 0),
                               post10_lihtc_project_cnt = replace_na(post10_lihtc_project_cnt, 0),
                                pre10_lihtc_project_dollars = replace_na(pre10_lihtc_project_dollars, 0),
                               post10_lihtc_project_dollars = replace_na(post10_lihtc_project_dollars, 0),
                               lihtc_flag = if_else(post10_lihtc_project_cnt >= 1, 1, 0))

# Finally, we want to filter our dataset to only have tracts that are eligible for the LIHTC program and that have SVI data:
svi_national_lihtc <- left_join(svi_national_lihtc, lihtc_eligible_flag, 
                                  join_by("GEOID_2010_trt" == "GEOID10")) %>%
                        filter(tolower(lihtc_eligibility) == "yes") %>%
                        filter(!is.na(F_TOTAL_10)) %>% 
                        filter(!is.na(F_TOTAL_20)) 


# View data
svi_national_lihtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 pre10_lihtc_project_cnt pre10_lihtc_project_dollars post10_lihtc_project_cnt post10_lihtc_project_dollars lihtc_flag lihtc_eligibility
01005950700 01 005 950700 AL Alabama Barbour County 1 South Region 6 East South Central Division 1753 687 563 615 1628 37.77641 0.8088 1 17 667 2.548726 0.06941 0 41 376 10.90426 0.01945 0 62 187 33.15508 0.2464 0 103 563 18.29485 0.04875 0 264 1208 21.85430 0.7570 1 201 1527 13.163065 0.4991 0 368 20.992584 0.89510 1 462 26.354820 0.66130 0 211 1085 19.44700 0.7505 1 107 399 26.81704 0.8048 1 0 1628 0.000000 0.09298 0 861 1753 49.11580 0.7101 0 687 17 2.474527 0.4324 0 38 5.5312955 0.6970 0 3 563 0.5328597 0.3037 0 19 563 3.374778 0.3529 0 233 1753 13.29150 0.9517 1 2.18306 0.4137 2 3.20468 0.8377 3 0.7101 0.7035 0 2.7377 0.6100 1 8.83554 0.6264 6 1527 691 595 565 1365 41.39194 0.8765 1 37 572 6.468532 0.6776 0 70 376 18.617021 0.38590 0 92 219 42.00913 0.4736 0 162 595 27.22689 0.4454 0 280 1114 25.13465 0.8942 1 105 1378 7.619739 0.5505 0 383 25.081860 0.88450 1 337 22.069417 0.51380 0 237 1041.0000 22.76657 0.8360 1 144 413.0000 34.86683 0.9114 1 11 1466 0.7503411 0.40700 0 711 1527.0000 46.56189 0.6441 0 691 13 1.881331 0.3740 0 37 5.3545586 0.7152 0 0 595 0.0000000 0.09796 0 115 595.0000 19.327731 0.8859 1 149 1527 9.757695 0.9470 1 3.4442 0.7707 2 3.55270 0.9403 3 0.6441 0.6387 0 3.02006 0.7337 2 10.66106 0.8537 7 0 0 0 0 0 Yes
01011952100 01 011 952100 AL Alabama Bullock County 1 South Region 6 East South Central Division 1652 796 554 564 1652 34.14044 0.7613 1 46 816 5.637255 0.33630 0 96 458 20.96070 0.19930 0 62 96 64.58333 0.8917 1 158 554 28.51986 0.29220 0 271 1076 25.18587 0.8163 1 155 1663 9.320505 0.3183 0 199 12.046005 0.47180 0 420 25.423729 0.60240 0 327 1279 25.56685 0.9151 1 137 375 36.53333 0.9108 1 0 1590 0.000000 0.09298 0 1428 1652 86.44068 0.8939 1 796 0 0.000000 0.1224 0 384 48.2412060 0.9897 1 19 554 3.4296029 0.7145 0 45 554 8.122744 0.6556 0 0 1652 0.00000 0.3640 0 2.52440 0.5138 2 2.99308 0.7515 2 0.8939 0.8856 1 2.8462 0.6637 1 9.25758 0.6790 6 1382 748 549 742 1382 53.69030 0.9560 1 40 511 7.827789 0.7730 1 110 402 27.363184 0.71780 0 45 147 30.61224 0.2307 0 155 549 28.23315 0.4773 0 181 905 20.00000 0.8253 1 232 1382 16.787265 0.8813 1 164 11.866860 0.27170 0 250 18.089725 0.26290 0 258 1132.0000 22.79152 0.8368 1 99 279.0000 35.48387 0.9162 1 33 1275 2.5882353 0.64520 0 1347 1382.0000 97.46744 0.9681 1 748 0 0.000000 0.1079 0 375 50.1336898 0.9922 1 0 549 0.0000000 0.09796 0 37 549.0000 6.739526 0.6039 0 0 1382 0.000000 0.1831 0 3.9129 0.8785 4 2.93280 0.7342 2 0.9681 0.9599 1 1.98506 0.2471 1 9.79886 0.7570 8 0 0 0 0 0 Yes
01015000300 01 015 000300 AL Alabama Calhoun County 1 South Region 6 East South Central Division 3074 1635 1330 1904 3067 62.08021 0.9710 1 293 1362 21.512482 0.96630 1 180 513 35.08772 0.65450 0 383 817 46.87882 0.5504 0 563 1330 42.33083 0.70280 0 720 2127 33.85049 0.9148 1 628 2835 22.151675 0.8076 1 380 12.361744 0.49340 0 713 23.194535 0.45030 0 647 2111 30.64898 0.9708 1 298 773 38.55110 0.9247 1 0 2878 0.000000 0.09298 0 2623 3074 85.32856 0.8883 1 1635 148 9.051988 0.6465 0 6 0.3669725 0.4502 0 68 1330 5.1127820 0.8082 1 303 1330 22.781955 0.9029 1 0 3074 0.00000 0.3640 0 4.36250 0.9430 4 2.93218 0.7233 2 0.8883 0.8800 1 3.1718 0.8070 2 11.35478 0.9009 9 2390 1702 1282 1287 2390 53.84937 0.9566 1 102 1066 9.568480 0.8541 1 158 609 25.944171 0.67520 0 286 673 42.49629 0.4856 0 444 1282 34.63339 0.6634 0 467 1685 27.71513 0.9180 1 369 2379 15.510719 0.8562 1 342 14.309623 0.40850 0 548 22.928870 0.57100 0 647 1831.0000 35.33588 0.9862 1 202 576.0000 35.06944 0.9130 1 16 2134 0.7497657 0.40690 0 1896 2390.0000 79.33054 0.8451 1 1702 96 5.640423 0.5329 0 0 0.0000000 0.2186 0 0 1282 0.0000000 0.09796 0 186 1282.0000 14.508580 0.8308 1 43 2390 1.799163 0.7727 1 4.2483 0.9395 4 3.28560 0.8773 2 0.8451 0.8379 1 2.45296 0.4602 2 10.83196 0.8718 9 0 0 0 0 0 Yes
01015000500 01 015 000500 AL Alabama Calhoun County 1 South Region 6 East South Central Division 1731 1175 743 1042 1619 64.36072 0.9767 1 124 472 26.271186 0.98460 1 136 461 29.50108 0.48970 0 163 282 57.80142 0.7919 1 299 743 40.24226 0.64910 0 340 1270 26.77165 0.8389 1 460 1794 25.641026 0.8722 1 271 15.655690 0.70190 0 368 21.259388 0.32190 0 507 1449 34.98965 0.9885 1 150 386 38.86010 0.9269 1 0 1677 0.000000 0.09298 0 1559 1731 90.06355 0.9123 1 1175 50 4.255319 0.5128 0 4 0.3404255 0.4480 0 0 743 0.0000000 0.1238 0 122 743 16.419919 0.8473 1 0 1731 0.00000 0.3640 0 4.32150 0.9362 4 3.03218 0.7679 2 0.9123 0.9038 1 2.2959 0.3818 1 10.56188 0.8244 8 940 907 488 586 940 62.34043 0.9815 1 59 297 19.865320 0.9833 1 100 330 30.303030 0.79220 1 58 158 36.70886 0.3497 0 158 488 32.37705 0.6020 0 199 795 25.03145 0.8930 1 118 940 12.553192 0.7770 1 246 26.170213 0.90530 1 118 12.553192 0.08233 0 383 822.5089 46.56484 0.9984 1 30 197.8892 15.16000 0.5363 0 0 889 0.0000000 0.09479 0 898 940.3866 95.49264 0.9489 1 907 0 0.000000 0.1079 0 2 0.2205072 0.4456 0 2 488 0.4098361 0.23670 0 146 487.6463 29.939736 0.9404 1 0 940 0.000000 0.1831 0 4.2368 0.9379 4 2.61712 0.5593 2 0.9489 0.9409 1 1.91370 0.2196 1 9.71652 0.7468 8 0 0 0 0 0 Yes
01015000600 01 015 000600 AL Alabama Calhoun County 1 South Region 6 East South Central Division 2571 992 796 1394 2133 65.35396 0.9789 1 263 905 29.060773 0.98990 1 121 306 39.54248 0.75940 1 209 490 42.65306 0.4481 0 330 796 41.45729 0.68030 0 641 1556 41.19537 0.9554 1 416 1760 23.636364 0.8383 1 220 8.556982 0.24910 0 584 22.714897 0.41610 0 539 1353 39.83740 0.9955 1 243 466 52.14592 0.9783 1 30 2366 1.267963 0.48990 0 1944 2571 75.61260 0.8440 1 992 164 16.532258 0.7673 1 8 0.8064516 0.5110 0 46 796 5.7788945 0.8329 1 184 796 23.115578 0.9049 1 614 2571 23.88176 0.9734 1 4.44280 0.9548 4 3.12890 0.8088 2 0.8440 0.8362 1 3.9895 0.9792 4 12.40520 0.9696 11 1950 964 719 837 1621 51.63479 0.9467 1 157 652 24.079755 0.9922 1 22 364 6.043956 0.01547 0 129 355 36.33803 0.3420 0 151 719 21.00139 0.2303 0 363 1387 26.17159 0.9048 1 351 1613 21.760694 0.9435 1 249 12.769231 0.32090 0 356 18.256410 0.27140 0 332 1259.7041 26.35540 0.9135 1 136 435.6156 31.22018 0.8775 1 0 1891 0.0000000 0.09479 0 1463 1949.9821 75.02633 0.8219 1 964 14 1.452282 0.3459 0 8 0.8298755 0.5269 0 19 719 2.6425591 0.61120 0 197 719.0542 27.397100 0.9316 1 329 1950 16.871795 0.9655 1 4.0175 0.9001 4 2.47809 0.4764 2 0.8219 0.8149 1 3.38110 0.8712 2 10.69859 0.8583 9 0 0 0 0 0 Yes
01015002101 01 015 002101 AL Alabama Calhoun County 1 South Region 6 East South Central Division 3872 1454 1207 1729 2356 73.38710 0.9916 1 489 2020 24.207921 0.97860 1 20 168 11.90476 0.02541 0 718 1039 69.10491 0.9332 1 738 1207 61.14333 0.96900 1 113 725 15.58621 0.6035 0 664 3943 16.839970 0.6495 0 167 4.313016 0.05978 0 238 6.146694 0.02255 0 264 2359 11.19118 0.3027 0 94 263 35.74144 0.9050 1 46 3769 1.220483 0.48250 0 1601 3872 41.34814 0.6572 0 1454 761 52.338377 0.9504 1 65 4.4704264 0.6738 0 5 1207 0.4142502 0.2791 0 113 1207 9.362055 0.7004 0 1516 3872 39.15289 0.9860 1 4.19220 0.9133 3 1.77253 0.1304 1 0.6572 0.6511 0 3.5897 0.9337 2 10.21163 0.7885 6 3238 1459 1014 1082 1836 58.93246 0.9735 1 251 1403 17.890235 0.9767 1 31 155 20.000000 0.44920 0 515 859 59.95343 0.8554 1 546 1014 53.84615 0.9535 1 134 916 14.62882 0.7033 0 251 3238 7.751699 0.5588 0 167 5.157505 0.03597 0 169 5.219271 0.02111 0 323 1667.0000 19.37612 0.7205 0 94 277.0000 33.93502 0.9040 1 0 3164 0.0000000 0.09479 0 1045 3238.0000 32.27301 0.5125 0 1459 607 41.603838 0.9185 1 65 4.4551062 0.6949 0 24 1014 2.3668639 0.57900 0 85 1014.0000 8.382643 0.6775 0 1402 3238 43.298332 0.9876 1 4.1658 0.9263 3 1.77637 0.1225 1 0.5125 0.5082 0 3.85750 0.9661 2 10.31217 0.8160 6 0 0 0 0 0 Yes
svi_national_lihtc_county_sum <- summarize_county_lihtc(svi_national_lihtc)

svi_national_lihtc_county_sum %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State County Division post10_lihtc_project_cnt tract_cnt post10_lihtc_project_dollars post10_lihtc_dollars_formatted
AK Bethel Census Area Pacific Division 0 2 0 \$0
AK Dillingham Census Area Pacific Division 0 1 0 \$0
AK Kenai Peninsula Borough Pacific Division 0 1 0 \$0
AK Nome Census Area Pacific Division 0 1 0 \$0
AK Yukon-Koyukuk Census Area Pacific Division 0 2 0 \$0
AL Barbour County East South Central Division 0 1 0 \$0
svi_divisional_lihtc_county_sum <- summarize_county_lihtc(svi_divisional_lihtc)
svi_divisional_lihtc_county_sum %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State County Division post10_lihtc_project_cnt tract_cnt post10_lihtc_project_dollars post10_lihtc_dollars_formatted
NJ Atlantic County Middle Atlantic Division 1 3 1497998 \$1,497,998
NJ Bergen County Middle Atlantic Division 0 2 0 \$0
NJ Burlington County Middle Atlantic Division 0 2 0 \$0
NJ Camden County Middle Atlantic Division 1 6 0 \$0
NJ Cape May County Middle Atlantic Division 0 2 0 \$0
NJ Cumberland County Middle Atlantic Division 0 1 0 \$0
# Create data frame of LIHTC eligible tracts 2010 nationally
svi_national_lihtc10 <- svi_national_lihtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county, 
    state, state_name, county, region_number, region, division_number, 
    division, F_TOTAL_10, E_TOTPOP_10) %>% rename("F_TOTAL" = "F_TOTAL_10")

# Count national-level SVI flags for 2010, create unified fips column
svi_2010_national_county_flags_lihtc <- flag_summarize(svi_national_lihtc10, "E_TOTPOP_10") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")

# Add suffix to flag columns 2010
colnames(svi_2010_national_county_flags_lihtc)[11:15] <- paste0(colnames(svi_2010_national_county_flags_lihtc)[11:15], 10)

# Create data frame of LIHTC eligible tracts 2020 nationally
svi_national_lihtc20 <- svi_national_lihtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county, 
    state, state_name, county, region_number, region, division_number, 
    division, F_TOTAL_20, E_TOTPOP_20) %>% rename("F_TOTAL" = "F_TOTAL_20")

# Count national-level SVI flags for 2020, create unified fips column
svi_2020_national_county_flags_lihtc <- flag_summarize(svi_national_lihtc20, "E_TOTPOP_20") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")

# Identify needed columns for 2020, add suffix
colnames(svi_2020_national_county_flags_lihtc)[11:15] <- paste0(colnames(svi_2020_national_county_flags_lihtc)[11:15], "20")

# Filter to needed columns for 2020 to avoid duplicate column column names
svi_2020_national_county_flags_join_lihtc <- svi_2020_national_county_flags_lihtc %>% ungroup() %>% select("fips_county_st", all_of(colnames(svi_2020_national_county_flags_lihtc)[11:15]))
 
# Join 2010 and 2020 data
svi_national_county_flags_lihtc <- left_join(svi_2010_national_county_flags_lihtc, svi_2020_national_county_flags_join_lihtc, join_by("fips_county_st" == "fips_county_st")) 

svi_national_county_flags_lihtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
fips_county_st FIPS_st FIPS_county state state_name county region_number region division_number division flag_count10 pop10 flag_by_pop10 flag_count_quantile10 flag_pop_quantile10 flag_count20 pop20 flag_by_pop20 flag_count_quantile20 flag_pop_quantile20
01005 01 005 AL Alabama Barbour County 1 South Region 6 East South Central Division 6 1753 0.0034227 0.2 0.8 7 1527 0.0045842 0.2 1.0
01011 01 011 AL Alabama Bullock County 1 South Region 6 East South Central Division 6 1652 0.0036320 0.2 0.8 8 1382 0.0057887 0.4 1.0
01015 01 015 AL Alabama Calhoun County 1 South Region 6 East South Central Division 40 15130 0.0026438 0.8 0.6 37 11783 0.0031401 0.8 0.8
01023 01 023 AL Alabama Choctaw County 1 South Region 6 East South Central Division 12 5578 0.0021513 0.6 0.4 15 5412 0.0027716 0.6 0.8
01031 01 031 AL Alabama Coffee County 1 South Region 6 East South Central Division 12 8139 0.0014744 0.6 0.2 13 8517 0.0015264 0.6 0.2
01033 01 033 AL Alabama Colbert County 1 South Region 6 East South Central Division 10 1983 0.0050429 0.4 1.0 8 1931 0.0041429 0.4 1.0
svi_national_county_lihtc <- left_join(svi_national_lihtc_county_sum,
                                      svi_national_county_flags_lihtc,
                                    join_by("State" == "state", "County" == "county",
                                            "Division" == "division"))

svi_national_county_lihtc$post10_lihtc_project_cnt[is.na(svi_national_county_lihtc$post10_lihtc_project_cnt)] <- 0

svi_national_county_lihtc$county_name <- paste0(svi_national_county_lihtc$County, ", ", svi_national_county_lihtc$State)

svi_national_county_lihtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State County Division post10_lihtc_project_cnt tract_cnt post10_lihtc_project_dollars post10_lihtc_dollars_formatted fips_county_st FIPS_st FIPS_county state_name region_number region division_number flag_count10 pop10 flag_by_pop10 flag_count_quantile10 flag_pop_quantile10 flag_count20 pop20 flag_by_pop20 flag_count_quantile20 flag_pop_quantile20 county_name
AK Bethel Census Area Pacific Division 0 2 0 \$0 02050 02 050 Alaska 1 West Region 9 18 10867 0.0016564 0.6 0.4 20 11715 0.0017072 0.8 0.4 Bethel Census Area, AK
AK Dillingham Census Area Pacific Division 0 1 0 \$0 02070 02 070 Alaska 1 West Region 9 9 2569 0.0035033 0.4 0.8 10 2801 0.0035702 0.4 0.8 Dillingham Census Area, AK
AK Kenai Peninsula Borough Pacific Division 0 1 0 \$0 02122 02 122 Alaska 1 West Region 9 7 251 0.0278884 0.2 1.0 8 531 0.0150659 0.4 1.0 Kenai Peninsula Borough, AK
AK Nome Census Area Pacific Division 0 1 0 \$0 02180 02 180 Alaska 1 West Region 9 9 5766 0.0015609 0.4 0.2 10 5901 0.0016946 0.4 0.4 Nome Census Area, AK
AK Yukon-Koyukuk Census Area Pacific Division 0 2 0 \$0 02290 02 290 Alaska 1 West Region 9 18 2300 0.0078261 0.6 1.0 21 2153 0.0097538 0.8 1.0 Yukon-Koyukuk Census Area, AK
AL Barbour County East South Central Division 0 1 0 \$0 01005 01 005 Alabama 1 South Region 6 6 1753 0.0034227 0.2 0.8 7 1527 0.0045842 0.2 1.0 Barbour County, AL
# Create data frame of LIHTC eligible tracts 2020 nationally
svi_divisional_lihtc10 <- svi_divisional_lihtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county, 
    state, state_name, county, region_number, region, division_number, 
    division, F_TOTAL_10, E_TOTPOP_10) %>% rename("F_TOTAL" = "F_TOTAL_10")

# Count divisional-level SVI flags for 2010, create unified fips column
svi_2010_divisional_county_flags_lihtc <- flag_summarize(svi_divisional_lihtc10, "E_TOTPOP_10") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")

# Add suffix to flag columns 2010
colnames(svi_2010_divisional_county_flags_lihtc)[11:15] <- paste0(colnames(svi_2010_divisional_county_flags_lihtc)[11:15], "10")

# Create data frame of NMTC eligible tracts 2020 nationally
svi_divisional_lihtc20 <- svi_divisional_lihtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county, 
    state, state_name, county, region_number, region, division_number, 
    division, F_TOTAL_20, E_TOTPOP_20) %>% rename("F_TOTAL" = "F_TOTAL_20")

# Count divisional-level SVI flags for 2020, create unified fips column
svi_2020_divisional_county_flags_lihtc <- flag_summarize(svi_divisional_lihtc20, "E_TOTPOP_20") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")

# Identify needed columns for 2020
colnames(svi_2020_divisional_county_flags_lihtc)[11:15] <- paste0(colnames(svi_2020_divisional_county_flags_lihtc)[11:15], "20")

# Filter to needed columns for 2020 to avoid duplicate column column names
svi_2020_divisional_county_flags_join_lihtc <- svi_2020_divisional_county_flags_lihtc %>% ungroup() %>% select("fips_county_st", all_of(colnames(svi_2020_divisional_county_flags_lihtc)[11:15]))
 
# Join 2010 and 2020 data
svi_divisional_county_flags_lihtc <- left_join(svi_2010_divisional_county_flags_lihtc, svi_2020_divisional_county_flags_join_lihtc, join_by("fips_county_st" == "fips_county_st")) 

svi_divisional_county_flags_lihtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
fips_county_st FIPS_st FIPS_county state state_name county region_number region division_number division flag_count10 pop10 flag_by_pop10 flag_count_quantile10 flag_pop_quantile10 flag_count20 pop20 flag_by_pop20 flag_count_quantile20 flag_pop_quantile20
34001 34 001 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 35 7939 0.0044086 0.8 1.0 37 8027 0.0046094 0.8 1.0
34003 34 003 NJ New Jersey Bergen County 1 Northeast Region 2 Middle Atlantic Division 13 11993 0.0010840 0.6 0.2 16 15211 0.0010519 0.6 0.2
34005 34 005 NJ New Jersey Burlington County 1 Northeast Region 2 Middle Atlantic Division 11 4637 0.0023722 0.4 0.6 6 6493 0.0009241 0.2 0.2
34007 34 007 NJ New Jersey Camden County 1 Northeast Region 2 Middle Atlantic Division 72 22516 0.0031977 1.0 0.8 61 20790 0.0029341 0.8 0.8
34009 34 009 NJ New Jersey Cape May County 1 Northeast Region 2 Middle Atlantic Division 15 5839 0.0025689 0.6 0.8 10 5394 0.0018539 0.4 0.4
34011 34 011 NJ New Jersey Cumberland County 1 Northeast Region 2 Middle Atlantic Division 10 1053 0.0094967 0.4 1.0 10 801 0.0124844 0.4 1.0
svi_divisional_county_lihtc <- left_join(svi_divisional_lihtc_county_sum, 
                                        svi_divisional_county_flags_lihtc,
                                    join_by("State" == "state", "County" == "county",
                                            "Division" == "division"))

svi_divisional_county_lihtc$post10_lihtc_project_cnt[is.na(svi_divisional_county_lihtc $post10_lihtc_project_cnt)] <- 0

svi_divisional_county_lihtc$county_name <- paste0(svi_divisional_county_lihtc$County, ", ", svi_divisional_county_lihtc$State)

svi_divisional_county_lihtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State County Division post10_lihtc_project_cnt tract_cnt post10_lihtc_project_dollars post10_lihtc_dollars_formatted fips_county_st FIPS_st FIPS_county state_name region_number region division_number flag_count10 pop10 flag_by_pop10 flag_count_quantile10 flag_pop_quantile10 flag_count20 pop20 flag_by_pop20 flag_count_quantile20 flag_pop_quantile20 county_name
NJ Atlantic County Middle Atlantic Division 1 3 1497998 \$1,497,998 34001 34 001 New Jersey 1 Northeast Region 2 35 7939 0.0044086 0.8 1.0 37 8027 0.0046094 0.8 1.0 Atlantic County, NJ
NJ Bergen County Middle Atlantic Division 0 2 0 \$0 34003 34 003 New Jersey 1 Northeast Region 2 13 11993 0.0010840 0.6 0.2 16 15211 0.0010519 0.6 0.2 Bergen County, NJ
NJ Burlington County Middle Atlantic Division 0 2 0 \$0 34005 34 005 New Jersey 1 Northeast Region 2 11 4637 0.0023722 0.4 0.6 6 6493 0.0009241 0.2 0.2 Burlington County, NJ
NJ Camden County Middle Atlantic Division 1 6 0 \$0 34007 34 007 New Jersey 1 Northeast Region 2 72 22516 0.0031977 1.0 0.8 61 20790 0.0029341 0.8 0.8 Camden County, NJ
NJ Cape May County Middle Atlantic Division 0 2 0 \$0 34009 34 009 New Jersey 1 Northeast Region 2 15 5839 0.0025689 0.6 0.8 10 5394 0.0018539 0.4 0.4 Cape May County, NJ
NJ Cumberland County Middle Atlantic Division 0 1 0 \$0 34011 34 011 New Jersey 1 Northeast Region 2 10 1053 0.0094967 0.4 1.0 10 801 0.0124844 0.4 1.0 Cumberland County, NJ

Exploratory Data Analysis

NMTC in South Atlantic Division

svi_divisional_county_nmtc_projects <- svi_divisional_county_nmtc %>% filter(post10_nmtc_project_cnt > 0)

Data Summary

summary(svi_divisional_county_nmtc_projects$flag_count10)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    5.00   54.75  134.50  399.71  346.00 3869.00
summary(svi_divisional_county_nmtc_projects$post10_nmtc_project_dollars)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
##   1460000   7800000  16225000  51968192  41860000 550969964
  • DESCRIPTION
# Scatterplot
# y is our independent variable (NMTC Project Dollars),  
# x is our dependent variable (SVI flag count)
ggplot2::ggplot(svi_divisional_county_nmtc_projects,
                aes(x=flag_count10,
                    y=post10_nmtc_project_dollars)) +
        geom_point() +
        geom_smooth(method="lm") +
        scale_y_continuous(labels = scales::dollar_format()) 
## `geom_smooth()` using formula = 'y ~ x'

# Pearson's r calculation
cor(svi_divisional_county_nmtc_projects$flag_count10, svi_divisional_county_nmtc_projects$post10_nmtc_project_dollars, method = "pearson")
## [1] 0.7085789
  • DESCRIPTION
boxplot(svi_divisional_county_nmtc_projects$flag_count10)

boxplot.stats(svi_divisional_county_nmtc_projects$flag_count10)$out %>% sort(decreasing = TRUE)
## [1] 3869 2688 2347 1961 1019  879  841
svi_divisional_county_nmtc_projects %>% 
  select(county_name, flag_count10, post10_nmtc_dollars_formatted) %>% 
  arrange(desc(flag_count10)) %>% 
  head(7) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
county_name flag_count10 post10_nmtc_dollars_formatted
Kings County, NY 3869 \$216,348,600
Bronx County, NY 2688 \$306,355,715
Queens County, NY 2347 \$85,225,100
Philadelphia County, PA 1961 \$550,969,964
Essex County, NJ 1019 \$81,662,084
New York County, NY 879 \$255,545,686
Hudson County, NJ 841 \$110,136,049
  • DESCRIPTION
svi_divisional_nmtc_cluster <- svi_divisional_county_nmtc_projects %>% 
                            select(county_name, post10_nmtc_project_dollars, 
                                   flag_count10) %>% 
                            remove_rownames %>% 
                            column_to_rownames(var="county_name")

# Remove nulls, if in dataset
svi_divisional_nmtc_cluster <- na.omit(svi_divisional_nmtc_cluster)


# Scale numeric variables
svi_divisional_nmtc_cluster <- scale(svi_divisional_nmtc_cluster)


svi_divisional_nmtc_cluster %>% head(5)
##                       post10_nmtc_project_dollars flag_count10
## Bergen County, NJ                      -0.4296451   -0.3418568
## Camden County, NJ                       0.2835350   -0.0912361
## Cumberland County, NJ                  -0.1922645   -0.3526362
## Essex County, NJ                        0.3039882    0.8344437
## Hudson County, NJ                       0.5954875    0.5946023

K-Means Clustering

set.seed(123)
k2_nmtc_div <- kmeans(svi_divisional_nmtc_cluster, centers = 2, nstart = 25)
set.seed(123)
k3_nmtc_div <- kmeans(svi_divisional_nmtc_cluster, centers = 3, nstart = 25)
set.seed(123)
k4_nmtc_div <- kmeans(svi_divisional_nmtc_cluster, centers = 4, nstart = 25)
set.seed(123)
k5_nmtc_div <- kmeans(svi_divisional_nmtc_cluster, centers = 5, nstart = 25)
# plots to compare
p_k2_nmtc_div <- factoextra::fviz_cluster(k2_nmtc_div, geom = "point", data = svi_divisional_nmtc_cluster) + ggtitle("k = 2")

p_k3_nmtc_div <- factoextra::fviz_cluster(k3_nmtc_div, geom = "point", data = svi_divisional_nmtc_cluster) + ggtitle("k = 3")

p_k4_nmtc_div <- factoextra::fviz_cluster(k4_nmtc_div, geom = "point",  data = svi_divisional_nmtc_cluster) + ggtitle("k = 4")

p_k5_nmtc_div <- factoextra::fviz_cluster(k5_nmtc_div, geom = "point",  data = svi_divisional_nmtc_cluster) + ggtitle("k = 5")

grid.arrange(p_k2_nmtc_div, p_k3_nmtc_div, p_k4_nmtc_div, p_k5_nmtc_div, nrow = 2)

elbow_plot(svi_divisional_nmtc_cluster)
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10
## [1] 11
## [1] 12
## [1] 13
## [1] 14
## [1] 15

p_k2_nmtc_div <- factoextra::fviz_cluster(k2_nmtc_div, geom = "point", data = svi_divisional_nmtc_cluster) + ggtitle("k = 2")

p_k2_nmtc_div

  • DESCRIPTION
svi_divisional_nmtc_cluster_label <- as.data.frame(svi_divisional_nmtc_cluster) %>%
                                  rownames_to_column(var = "county_name") %>%
                                  as_tibble() %>%
                                  mutate(cluster = k2_nmtc_div$cluster) %>%
                                  select(county_name, cluster)

svi_divisional_county_nmtc_projects2 <- left_join(svi_divisional_county_nmtc_projects, svi_divisional_nmtc_cluster_label, join_by(county_name == county_name))

# View county counts in each cluster
table(svi_divisional_county_nmtc_projects2$cluster)
## 
##  1  2 
##  6 46
# Cluster 1 Scatterplot
# y is our independent variable (NMTC Project Dollars),  
# x is our dependent variable (SVI flag count)

svi_divisional_county_nmtc_projects2 %>% 
  filter(cluster == 1) %>%
  ggplot2::ggplot(aes(x=flag_count10,
                    y=post10_nmtc_project_dollars)) +
        geom_point() +
        geom_smooth(method="lm") +
        scale_y_continuous(labels = scales::dollar_format()) 
## `geom_smooth()` using formula = 'y ~ x'

svi_divisional_county_nmtc_projects2 %>% 
  filter(cluster == 1) %>%
  select(flag_count10,post10_nmtc_project_dollars) %>%
  cor(method = "pearson")
##                             flag_count10 post10_nmtc_project_dollars
## flag_count10                    1.000000                   -0.114767
## post10_nmtc_project_dollars    -0.114767                    1.000000
svi_divisional_county_nmtc_projects2 %>% 
  filter(cluster == 1) %>%
  select(county_name, flag_count10, post10_nmtc_dollars_formatted) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
county_name flag_count10 post10_nmtc_dollars_formatted
Bronx County, NY 2688 \$306,355,715
Kings County, NY 3869 \$216,348,600
New York County, NY 879 \$255,545,686
Queens County, NY 2347 \$85,225,100
Allegheny County, PA 712 \$244,342,400
Philadelphia County, PA 1961 \$550,969,964
  • DESCRIPTION
# Cluster 2 Scatterplot
# y is our independent variable (NMTC Project Dollars),  
# x is our dependent variable (SVI flag count)

svi_divisional_county_nmtc_projects2 %>% 
  filter(cluster == 2) %>%
  ggplot2::ggplot(aes(x=flag_count10,
                    y=post10_nmtc_project_dollars)) +
        geom_point() +
        geom_smooth(method="lm") +
        scale_y_continuous(labels = scales::dollar_format()) 
## `geom_smooth()` using formula = 'y ~ x'

svi_divisional_county_nmtc_projects2 %>% 
  filter(cluster == 2) %>%
  select(flag_count10,post10_nmtc_project_dollars) %>%
  cor(method = "pearson")
##                             flag_count10 post10_nmtc_project_dollars
## flag_count10                     1.00000                     0.72778
## post10_nmtc_project_dollars      0.72778                     1.00000
svi_divisional_county_nmtc_projects2 %>% 
  filter(cluster == 2) %>%
  select(county_name, flag_count10, post10_nmtc_dollars_formatted) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
county_name flag_count10 post10_nmtc_dollars_formatted
Bergen County, NJ 146 \$10,000,000
Camden County, NJ 332 \$79,664,200
Cumberland County, NJ 138 \$33,187,593
Essex County, NJ 1019 \$81,662,084
Hudson County, NJ 841 \$110,136,049
Mercer County, NJ 225 \$8,000,000
Middlesex County, NJ 226 \$48,700,000
Ocean County, NJ 163 \$1,900,000
Passaic County, NJ 447 \$49,154,956
Union County, NJ 344 \$20,700,000
Albany County, NY 85 \$9,625,000
Allegany County, NY 29 \$9,300,000
Broome County, NY 131 \$5,280,000
Cattaraugus County, NY 44 \$6,790,000
Cayuga County, NY 27 \$6,240,000
Chautauqua County, NY 76 \$39,360,000
Chenango County, NY 19 \$58,819,000
Columbia County, NY 14 \$9,700,000
Cortland County, NY 12 \$2,000,000
Erie County, NY 528 \$76,710,000
Monroe County, NY 574 \$19,998,000
Nassau County, NY 151 \$1,460,000
Onondaga County, NY 352 \$20,428,080
Rensselaer County, NY 78 \$7,020,000
Schenectady County, NY 68 \$11,595,000
St. Lawrence County, NY 75 \$1,920,000
Steuben County, NY 58 \$7,680,000
Tompkins County, NY 32 \$2,643,020
Westchester County, NY 424 \$39,580,000
Adams County, PA 5 \$14,161,000
Berks County, PA 219 \$7,840,000
Clearfield County, PA 44 \$26,360,000
Dauphin County, PA 140 \$32,123,500
Delaware County, PA 236 \$14,190,000
Erie County, PA 184 \$7,358,392
Jefferson County, PA 25 \$11,453,160
Lackawanna County, PA 107 \$19,075,000
Lancaster County, PA 114 \$12,514,500
Lebanon County, PA 38 \$5,335,000
Lycoming County, PA 55 \$25,440,000
Mercer County, PA 54 \$18,440,000
Mifflin County, PA 37 \$12,130,000
Northampton County, PA 86 \$18,260,000
Washington County, PA 76 \$12,760,000
Westmoreland County, PA 108 \$6,737,500
York County, PA 143 \$20,127,500

Here we can find that our correlation actually strengthened, indicating that the majority of our data points are in line with the trends of the overall data.

In addition, it seems the amount of money given to counties in the Middle Atlantic Division with 0 - 1,000 SVI flags is correlated with NMTC dollars from $0 to just over $90 million.

Thus, we can conclude here that for the majority of the counties in the Middle Atlantic Division, there’s a fairly strong positive correlation between more vulnerable counties receiving more NMTC money than less vulnerable counties.

Bivariate Mapping

divisional_county_sf <- svi_county_map2010 %>% select(COUNTYFP, STATEFP, geometry)

divisional_county_sf %>% head(5)
## Simple feature collection with 5 features and 2 fields
## Geometry type: MULTIPOLYGON
## Dimension:     XY
## Bounding box:  xmin: -75.14001 ymin: 38.92852 xmax: -73.89398 ymax: 41.13419
## Geodetic CRS:  NAD83
##   COUNTYFP STATEFP                       geometry
## 1      001      34 MULTIPOLYGON (((-74.42314 3...
## 2      003      34 MULTIPOLYGON (((-73.92676 4...
## 3      005      34 MULTIPOLYGON (((-74.99056 4...
## 4      007      34 MULTIPOLYGON (((-75.14001 3...
## 5      009      34 MULTIPOLYGON (((-74.94545 3...
# Join our NMTC projects data with our shapefile geocoordinates
svi_divisional_county_nmtc_sf <- left_join(svi_divisional_county_nmtc_projects, divisional_county_sf, join_by("FIPS_st" == "STATEFP", "FIPS_county" == "COUNTYFP"))

svi_divisional_county_nmtc_sf %>% head(5) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State County Division post10_nmtc_project_cnt tract_cnt post10_nmtc_project_dollars post10_nmtc_dollars_formatted fips_county_st FIPS_st FIPS_county state_name region_number region division_number flag_count10 pop10 flag_by_pop10 flag_count_quantile10 flag_pop_quantile10 flag_count20 pop20 flag_by_pop20 flag_count_quantile20 flag_pop_quantile20 county_name geometry
NJ Bergen County Middle Atlantic Division 1 30 10000000 \$10,000,000 34003 34 003 New Jersey 1 Northeast Region 2 146 143973 0.0010141 1.0 0.4 165 154365 0.0010689 1.0 0.4 Bergen County, NJ MULTIPOLYGON (((-73.92676 4…
NJ Camden County Middle Atlantic Division 5 47 79664200 \$79,664,200 34007 34 007 New Jersey 1 Northeast Region 2 332 183630 0.0018080 1.0 1.0 315 180659 0.0017436 1.0 0.8 Camden County, NJ MULTIPOLYGON (((-75.14001 3…
NJ Cumberland County Middle Atlantic Division 2 21 33187593 \$33,187,593 34011 34 011 New Jersey 1 Northeast Region 2 138 101151 0.0013643 0.8 0.6 135 97989 0.0013777 0.8 0.6 Cumberland County, NJ MULTIPOLYGON (((-75.1145 39…
NJ Essex County Middle Atlantic Division 6 115 81662084 \$81,662,084 34013 34 013 New Jersey 1 Northeast Region 2 1019 385872 0.0026408 1.0 1.0 1039 385359 0.0026962 1.0 1.0 Essex County, NJ MULTIPOLYGON (((-74.13892 4…
NJ Hudson County Middle Atlantic Division 5 100 110136049 \$110,136,049 34017 34 017 New Jersey 1 Northeast Region 2 841 385737 0.0021802 1.0 1.0 802 404100 0.0019847 1.0 1.0 Hudson County, NJ MULTIPOLYGON (((-74.02039 4…
# Create classes for bivariate mapping 
svi_divisional_county_nmtc_sf <- bi_class(svi_divisional_county_nmtc_sf, x = flag_count10, y = post10_nmtc_project_dollars, style = "quantile", dim = 3)

# View data
svi_divisional_county_nmtc_sf %>% head(5) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State County Division post10_nmtc_project_cnt tract_cnt post10_nmtc_project_dollars post10_nmtc_dollars_formatted fips_county_st FIPS_st FIPS_county state_name region_number region division_number flag_count10 pop10 flag_by_pop10 flag_count_quantile10 flag_pop_quantile10 flag_count20 pop20 flag_by_pop20 flag_count_quantile20 flag_pop_quantile20 county_name geometry bi_class
NJ Bergen County Middle Atlantic Division 1 30 10000000 \$10,000,000 34003 34 003 New Jersey 1 Northeast Region 2 146 143973 0.0010141 1.0 0.4 165 154365 0.0010689 1.0 0.4 Bergen County, NJ MULTIPOLYGON (((-73.92676 4… 2-2
NJ Camden County Middle Atlantic Division 5 47 79664200 \$79,664,200 34007 34 007 New Jersey 1 Northeast Region 2 332 183630 0.0018080 1.0 1.0 315 180659 0.0017436 1.0 0.8 Camden County, NJ MULTIPOLYGON (((-75.14001 3… 3-3
NJ Cumberland County Middle Atlantic Division 2 21 33187593 \$33,187,593 34011 34 011 New Jersey 1 Northeast Region 2 138 101151 0.0013643 0.8 0.6 135 97989 0.0013777 0.8 0.6 Cumberland County, NJ MULTIPOLYGON (((-75.1145 39… 2-3
NJ Essex County Middle Atlantic Division 6 115 81662084 \$81,662,084 34013 34 013 New Jersey 1 Northeast Region 2 1019 385872 0.0026408 1.0 1.0 1039 385359 0.0026962 1.0 1.0 Essex County, NJ MULTIPOLYGON (((-74.13892 4… 3-3
NJ Hudson County Middle Atlantic Division 5 100 110136049 \$110,136,049 34017 34 017 New Jersey 1 Northeast Region 2 841 385737 0.0021802 1.0 1.0 802 404100 0.0019847 1.0 1.0 Hudson County, NJ MULTIPOLYGON (((-74.02039 4… 3-3
# Create map with ggplot
svi_divisional_county_nmtc_map <- ggplot() +
  # Map county shapefile, fill with bi_class categories
  geom_sf(data = svi_divisional_county_nmtc_sf, mapping = aes(geometry=geometry, fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
  # Set to biscale palette
  bi_scale_fill(pal = "GrPink", dim = 3) +
  # Add state shapefiles for outline
  geom_sf(data=divisional_st_sf, color="black", fill=NA, linewidth=.5, aes(geometry=geometry)) +
  labs(
    title = paste0("Correlation of 2010 ", census_division, " SVI Flag Count \n and 2011 - 2020 NMTC Tax Dollars"),
  ) +
  # Set them to biscale
  bi_theme(base_size = 10)

# Create biscale legend
svi_divisional_county_nmtc_legend <- bi_legend(pal = "GrPink",
                    dim = 3,
                    xlab = "SVI Flag Count",
                    ylab = "NMTC Dollars",
                    size = 8)

# Combine map with legend using cowplot
svi_divisional_county_nmtc_bivarmap <- ggdraw() +
  draw_plot(svi_divisional_county_nmtc_map) +
  # Set legend location
  draw_plot(svi_divisional_county_nmtc_legend, x= -.02,  y = -.05,
 width=.20)


# View map
svi_divisional_county_nmtc_bivarmap

An analysis of the bivariate map above displays that our high NMTC dollars and high SVI flag counts are largely clustered in the NYC metro area across NY and NJ.

In contrast, on a divisional level PA has several counties with low SVI flag counts, but moderate-to-high NMTC dollars.

svi_divisional_county_nmtc_sf %>% filter(State %in% c("NY", "NJ")) %>% select(State, County, flag_count10, post10_nmtc_dollars_formatted) %>% arrange(desc(flag_count10)) %>% head(6) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State County flag_count10 post10_nmtc_dollars_formatted
NY Kings County 3869 \$216,348,600
NY Bronx County 2688 \$306,355,715
NY Queens County 2347 \$85,225,100
NJ Essex County 1019 \$81,662,084
NY New York County 879 \$255,545,686
NJ Hudson County 841 \$110,136,049

[INCLUDE TEXT]

svi_divisional_county_nmtc_sf %>% filter(State == "PA") %>%
  arrange(desc(post10_nmtc_project_dollars), flag_count10) %>% select(State, County, flag_count10, post10_nmtc_dollars_formatted) %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
State County flag_count10 post10_nmtc_dollars_formatted
PA Philadelphia County 1961 \$550,969,964
PA Allegheny County 712 \$244,342,400
PA Dauphin County 140 \$32,123,500
PA Clearfield County 44 \$26,360,000
PA Lycoming County 55 \$25,440,000
PA York County 143 \$20,127,500
PA Lackawanna County 107 \$19,075,000
PA Mercer County 54 \$18,440,000
PA Northampton County 86 \$18,260,000
PA Delaware County 236 \$14,190,000

LIHTC in South Atlantic Division

  • Complete LIHTC analysis same as NMTC above

Data Summary

  • CONTENT

K-Means Clustering

  • CONTENT

Bivariate Mapping

  • CONTENT