Chapter 2 is an examination of the national trends in median
home values from 1990 to 2000. Included in the analysis is a selection
of variables to measure gentrification nationally and metro areas.
The raw data originated from the Longitudinal Tabulated Database
(LTD) that uses the long-form census from 1970 to 2010, and the
meta-data. The data dictionary was generated from the LTD & merged
with the census dataset. The purposes of this study, the years before
1990 were dropped. The spatial files were merged with the census data
& the ACS data to create the dorling chloropeth maps.
##
## rural urban
## 12971 59722
Next, the team identified the common variables to use in the
analysis.
## [1] "SHARED VARIABLES:"
## [1] "a15asn" "a15blk" "a15hsp" "a15ntv" "a15wht" "a18und" "a60asn"
## [8] "a60blk" "a60hsp" "a60ntv" "a60up" "a60wht" "a75up" "ag15up"
## [15] "ag25up" "ag5up" "ageasn" "ageblk" "agehsp" "agentv" "agewht"
## [22] "asian" "china" "clf" "cni16u" "col" "cuban" "dapov"
## [29] "dbpov" "dflabf" "dfmpov" "dhpov" "dis" "dmulti" "dnapov"
## [36] "dpov" "dwpov" "empclf" "family" "fb" "fhh" "filip"
## [43] "flabf" "geanc" "gefb" "h10yrs" "h30old" "haw" "hh"
## [50] "hha" "hhb" "hhh" "hhw" "hinc" "hinca" "hincb"
## [57] "hinch" "hincw" "hisp" "hs" "hu" "incpc" "india"
## [64] "iranc" "irfb" "itanc" "itfb" "japan" "korea" "lep"
## [71] "manuf" "mar" "mex" "mhmval" "mrent" "multi" "n10imm"
## [78] "n65pov" "napov" "nat" "nbpov" "nfmpov" "nhblk" "nhpov"
## [85] "nhwht" "nnapov" "npov" "ntv" "nwpov" "ohu" "olang"
## [92] "own" "pop" "pr" "prof" "rent" "ruanc" "rufb"
## [99] "scanc" "scfb" "semp" "tractid" "unemp" "vac" "vet"
## [106] "viet" "wds"
## [1] "NOT SHARED:"
## [1] "ag16cv" "ag18cv" "hu00sp" "hu90sp" "ohu00sp" "ohu90sp" "pop90.1"
## type variables
## 1 shared a15asn
## 2 shared a15blk
## 3 shared a15hsp
## 4 shared a15ntv
## 5 shared a15wht
## 6 shared a18und
## Create Dataset for Analysis
To facilitate the analysis,
23 variables were selected for the model and nine variables were created
as a proportion of the total population.
### General quantile variable analysis
Statistic | Min | Pctl(25) | Median | Mean | Pctl(75) | Max |
mhmval90 | 0 | 58,800 | 86,500 | 112,399 | 141,800 | 500,001 |
mhmval00 | 0 | 81,600 | 119,900 | 144,738 | 173,894 | 1,000,001 |
hinc00 | 2,499 | 33,000 | 43,825 | 47,657 | 58,036 | 200,001 |
hu00 | 0 | 1,102 | 1,519 | 1,570 | 1,999 | 11,522 |
own00 | 0 | 542 | 902 | 939 | 1,289 | 4,911 |
rent00 | 0 | 195 | 398 | 516 | 712 | 8,544 |
empclf00 | 0 | 1,205 | 1,756 | 1,820 | 2,373 | 10,334 |
clf00 | 0 | 1,302 | 1,865 | 1,930 | 2,502 | 11,251 |
unemp00 | 0 | 51 | 87 | 110 | 140 | 6,405 |
prof00 | 0 | 299 | 539 | 637 | 873 | 6,610 |
dpov00 | 0 | 2,671 | 3,718 | 3,804 | 4,871 | 23,892 |
npov00 | 0 | 149 | 304 | 452 | 601 | 5,515 |
ag25up00 | 0 | 1,763 | 2,451 | 2,520 | 3,224 | 17,974 |
hs00 | 0 | 665 | 1,071 | 1,155 | 1,552 | 8,909 |
col00 | 0 | 243 | 492 | 665 | 923 | 9,313 |
pop00.x | 0 | 2,751 | 3,802 | 3,901 | 4,976 | 36,206 |
nhwht00 | 0 | 1,308 | 2,514 | 2,591 | 3,713 | 20,619 |
nhblk00 | 0 | 41 | 141 | 522 | 527 | 14,039 |
hisp00 | 0 | 55 | 153 | 547 | 533 | 13,391 |
asian00 | 0 | 22 | 65 | 189 | 183 | 9,491 |
p.white | 0 | 47 | 78 | 67 | 91 | 100 |
p.black | 0 | 1 | 4 | 14 | 14 | 100 |
p.hisp | 0 | 2 | 4 | 13 | 15 | 100 |
p.asian | 0 | 1 | 2 | 5 | 5 | 95 |
p.hs | 0 | 67 | 72 | 72 | 77 | 100 |
p.col | 0 | 12 | 21 | 26 | 36 | 100 |
p.prof | 0 | 23 | 31 | 34 | 43 | 100 |
p.unemp | 0 | 3 | 5 | 6 | 8 | 100 |
pov.rate | 0 | 4 | 9 | 12 | 17 | 100 |
Statistic | Min | Pctl(25) | Median | Mean | Pctl(75) | Max |
mhmval90 | 0 | 58,800 | 86,500 | 112,399 | 141,800 | 500,001 |
mhmval00 | 0 | 81,600 | 119,900 | 144,738 | 173,894 | 1,000,001 |
hinc00 | 2,499 | 33,000 | 43,825 | 47,657 | 58,036 | 200,001 |
hu00 | 0 | 1,102 | 1,519 | 1,570 | 1,999 | 11,522 |
own00 | 0 | 542 | 902 | 939 | 1,289 | 4,911 |
rent00 | 0 | 195 | 398 | 516 | 712 | 8,544 |
empclf00 | 0 | 1,205 | 1,756 | 1,820 | 2,373 | 10,334 |
clf00 | 0 | 1,302 | 1,865 | 1,930 | 2,502 | 11,251 |
unemp00 | 0 | 51 | 87 | 110 | 140 | 6,405 |
prof00 | 0 | 299 | 539 | 637 | 873 | 6,610 |
dpov00 | 0 | 2,671 | 3,718 | 3,804 | 4,871 | 23,892 |
npov00 | 0 | 149 | 304 | 452 | 601 | 5,515 |
ag25up00 | 0 | 1,763 | 2,451 | 2,520 | 3,224 | 17,974 |
hs00 | 0 | 665 | 1,071 | 1,155 | 1,552 | 8,909 |
col00 | 0 | 243 | 492 | 665 | 923 | 9,313 |
pop00.x | 0 | 2,751 | 3,802 | 3,901 | 4,976 | 36,206 |
nhwht00 | 0 | 1,308 | 2,514 | 2,591 | 3,713 | 20,619 |
nhblk00 | 0 | 41 | 141 | 522 | 527 | 14,039 |
hisp00 | 0 | 55 | 153 | 547 | 533 | 13,391 |
asian00 | 0 | 22 | 65 | 189 | 183 | 9,491 |
p.white | 0 | 47 | 78 | 67 | 91 | 100 |
p.black | 0 | 1 | 4 | 14 | 14 | 100 |
p.hisp | 0 | 2 | 4 | 13 | 15 | 100 |
p.asian | 0 | 1 | 2 | 5 | 5 | 95 |
p.hs | 0 | 67 | 72 | 72 | 77 | 100 |
p.col | 0 | 12 | 21 | 26 | 36 | 100 |
p.prof | 0 | 23 | 31 | 34 | 43 | 100 |
p.unemp | 0 | 3 | 5 | 6 | 8 | 100 |
pov.rate | 0 | 4 | 9 | 12 | 17 | 100 |
_ ### Exploration of Median Home Value Below is a statistical description of the 1990 & 2000 MHV, corrected for inflation.
Statistic | Min | Pctl(25) | Median | Mean | Pctl(75) | Max |
MedianHomeValue1990 | 0 | 77,256 | 113,651 | 147,679 | 186,308 | 656,941 |
MedianHomeValue2000 | 0 | 81,600 | 119,900 | 144,738 | 173,894 | 1,000,001 |
Change.90.to.00 | -656,941 | -22,553 | 882 | -2,941 | 19,580 | 1,000,001 |
Statistic | Min | Pctl(25) | Median | Mean | Pctl(75) | Max |
MedianHomeValue1990 | 0 | 77,256 | 113,651 | 147,679 | 186,308 | 656,941 |
MedianHomeValue2000 | 0 | 81,600 | 119,900 | 144,738 | 173,894 | 1,000,001 |
Change.90.to.00 | -656,941 | -22,553 | 882 | -2,941 | 19,580 | 1,000,001 |
_
## Histogram of the MHV
The historgram below shows the
median home value increased $882 from 1990 to 2000, & the mean
increase was $2,941.
## Compare the MHV distribution of 1990 to 2000
## Change in MHV 1990-2000
It’s necessary to look at the percentage of change of the house values, not just the amount of median home value increases to contextualize the amount of growth in a given census tract. Additionally, tracts with an mean home value of less the $10k initially but increase to the normal distribution are problematic because they skew the distribution. Additionally, without more data than we have available, it’s not possible to know if those values are accurate. The best practice at this stage is to determine how many tracts are affected and filter them out of the dataset.
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -1.00000 -0.15550 0.00904 0.05509 0.20782 28.45915 145
## [1] 26
tractid | mhmval90 | mhmval00 | hinc00 | hu00 | own00 | rent00 |
---|---|---|---|---|---|---|
fips-01-097-000402 | 67489 | 593427 | 5714 | 719 | 7.005 | 683 |
fips-04-019-000100 | 73036 | 625000 | 9464 | 455 | 18 | 392 |
fips-12-099-002600 | 63800 | 625000 | 21944 | 144 | 5 | 124 |
fips-13-121-002100 | 32500 | 261100 | 14363 | 799 | 54 | 698 |
fips-17-031-842200 | 21602 | 281776 | 24702 | 1251 | 58 | 757 |
fips-17-167-001400 | 55000 | 1e+06 | 12321 | 667 | 8 | 524 |
empclf00 | clf00 | unemp00 | prof00 | dpov00 | npov00 | ag25up00 | hs00 |
---|---|---|---|---|---|---|---|
260 | 449 | 189 | 17 | 1953 | 1575 | 577 | 483 |
250 | 295 | 45 | 96 | 615 | 301 | 553 | 312 |
124 | 136 | 12 | 17 | 419 | 163 | 313 | 236 |
643 | 758 | 115 | 270 | 1604 | 699 | 1053 | 501 |
591 | 881 | 290 | 193 | 2922 | 1697 | 1192 | 770 |
257 | 257 | 0 | 117 | 580 | 182 | 764 | 551 |
col00 | pop00.x | nhwht00 | nhblk00 | hisp00 | asian00 | cbsa |
---|---|---|---|---|---|---|
6.001 | 2092 | 7 | 2070 | 13 | 1 | 33660 |
114 | 605 | 390 | 42 | 143 | 9 | 46060 |
18 | 414 | 254 | 120 | 36 | 2 | 48424 |
298 | 1573 | 317 | 1073 | 38 | 134 | 12060 |
193 | 2783 | 173 | 2524 | 72 | 10 | 16974 |
125 | 928 | 661 | 230 | 11 | 21 | 44100 |
cbsaname | p.white | p.black | p.hisp | p.asian | p.hs |
---|---|---|---|---|---|
Mobile, AL | 0.3346 | 98.95 | 0.6214 | 0.04781 | 84.75 |
Tucson, AZ | 64.46 | 6.942 | 23.64 | 1.488 | 77.03 |
West Palm Beach-Boca Raton-Boynton FL | 61.35 | 28.99 | 8.696 | 0.4831 | 81.15 |
Atlanta-Sandy Springs-Marietta, GA | 20.15 | 68.21 | 2.416 | 8.519 | 75.88 |
Chicago-Naperville-Joliet, IL | 6.216 | 90.69 | 2.587 | 0.3593 | 80.79 |
Springfield, IL | 71.23 | 24.78 | 1.185 | 2.263 | 88.48 |
p.col | p.prof | p.unemp | pov.rate |
---|---|---|---|
1.04 | 6.539 | 42.09 | 80.64 |
20.61 | 38.4 | 15.25 | 48.94 |
5.751 | 13.71 | 8.824 | 38.9 |
28.3 | 41.99 | 15.17 | 43.58 |
16.19 | 32.66 | 32.92 | 58.08 |
16.36 | 45.53 | 0 | 31.38 |
A total of 26 tracts had an increase of more than 500% between 1990 & 2000. These are the observations that will be filtered out of the analysis.
## Group the Growth Rates by Metro Area
cbsaname | ave.change.d | growth |
---|---|---|
Corvallis, OR | $73,784 | 76.24 |
Portland-Vancouver-Beaverton, OR-WA | $68,742 | 72.6 |
Salt Lake City, UT | $61,688 | 69.81 |
Boulder, CO | $95,086 | 69.34 |
Provo-Orem, UT | $60,623 | 68.62 |
Salem, OR | $49,059 | 62.02 |
Eugene-Springfield, OR | $51,452 | 61.87 |
Fort Collins-Loveland, CO | $57,614 | 57.04 |
Longview, WA | $41,105 | 55.78 |
Missoula, MT | $45,872 | 55.07 |
Jackson, MI | $28,460 | 54.13 |
Greeley, CO | $41,882 | 52.39 |
Wenatchee, WA | $46,144 | 51.15 |
Detroit-Livonia-Dearborn, MI | $29,104 | 50.07 |
Yakima, WA | $31,055 | 50.04 |
Ogden-Clearfield, UT | $42,624 | 49.2 |
Denver-Aurora, CO | $52,596 | 48.63 |
Monroe, MI | $42,470 | 48.06 |
Bay City, MI | $26,924 | 47.72 |
Logan, UT-ID | $35,923 | 47.11 |
Eau Claire, WI | $28,048 | 43.68 |
Madison, WI | $43,258 | 42.8 |
Sioux Falls, SD | $31,411 | 41.77 |
Grand Junction, CO | $34,669 | 41.55 |
Mount Vernon-Anacortes, WA a | $42,331 | 41.26 |
According to Baum-Snow et al. two major risk factors for
gentrification are not being met and will lead to the decrease of
central city home values between 1990 & 2000:
1. A
statistically significant increase in housing the cost at the 90th
percentile. 2. Increasing nearby neighborhood rent.
The categories for the selected variables included:
type | variables |
---|---|
shared | a15asn |
shared | a15blk |
shared | a15hsp |
shared | a15ntv |
shared | a15wht |
shared | a18und |
For the 1990 & 2000 variables listed above, the same transformations were conducted to find the percentages of the variable in the populations & used to measure the percentage of tracts that underwent gentrification.
Statistic | Min | Pctl(25) | Median | Mean | Pctl(75) | Max |
mhv.90 | 11,657 | 77,519 | 113,782 | 148,038 | 186,571 | 656,941 |
mhv.00 | 0 | 81,600 | 119,900 | 144,738 | 173,894 | 1,000,001 |
mhv.change | -656,941 | -22,638 | 835 | -3,432 | 19,464 | 963,869 |
pct.change | -100 | -16 | 1 | 6 | 21 | 2,846 |
p.white.90 | 0 | 64 | 87 | 74 | 95 | 100 |
p.black.90 | 0 | 1 | 3 | 12 | 10 | 100 |
p.hisp.90 | 0 | 1 | 3 | 10 | 9 | 100 |
p.asian.90 | 0 | 0 | 1 | 3 | 3 | 94 |
p.hs.edu.90 | 0 | 69 | 74 | 74 | 80 | 100 |
p.col.edu.90 | 0 | 10 | 18 | 22 | 30 | 100 |
p.prof.90 | 0 | 17 | 25 | 27 | 34 | 100 |
p.unemp.90 | 0 | 4 | 5 | 7 | 8 | 64 |
pov.rate.90 | 0 | 4 | 8 | 12 | 16 | 100 |
p.white.00 | 0 | 47 | 78 | 67 | 91 | 100 |
p.black.00 | 0 | 1 | 4 | 14 | 14 | 100 |
p.hisp.00 | 0 | 2 | 4 | 13 | 15 | 100 |
p.asian.00 | 0 | 1 | 2 | 5 | 5 | 95 |
p.hs.edu.00 | 0 | 67 | 72 | 72 | 77 | 100 |
p.col.edu.00 | 0 | 12 | 21 | 26 | 36 | 100 |
p.prof.00 | 0 | 23 | 31 | 34 | 43 | 100 |
p.unemp.00 | 0 | 3 | 5 | 6 | 8 | 100 |
pov.rate.00 | 0 | 4 | 9 | 12 | 17 | 100 |
metro.mhv.pct.90 | 1 | 20 | 41 | 45 | 68 | 100 |
metro.mhv.pct.00 | 1 | 20 | 41 | 45 | 68 | 100 |
metro.median.pay.90 | 14,871 | 28,906 | 32,457 | 32,924 | 35,833 | 52,374 |
metro.median.pay.00 | 23,012 | 39,457 | 43,139 | 45,054 | 49,522 | 73,701 |
metro.mhv.pct.change | -99 | -5 | 0 | 0 | 6 | 99 |
pay.change | 4,930 | 9,775 | 11,441 | 12,130 | 14,001 | 26,211 |
race.change | -100 | -12 | -5 | -8 | -2 | 100 |
metro.race.rank.90 | 1 | 20 | 41 | 45 | 68 | 100 |
Statistic | Min | Pctl(25) | Median | Mean | Pctl(75) | Max |
mhv.90 | 11,657 | 77,519 | 113,782 | 148,038 | 186,571 | 656,941 |
mhv.00 | 0 | 81,600 | 119,900 | 144,738 | 173,894 | 1,000,001 |
mhv.change | -656,941 | -22,638 | 835 | -3,432 | 19,464 | 963,869 |
pct.change | -100 | -16 | 1 | 6 | 21 | 2,846 |
p.white.90 | 0 | 64 | 87 | 74 | 95 | 100 |
p.black.90 | 0 | 1 | 3 | 12 | 10 | 100 |
p.hisp.90 | 0 | 1 | 3 | 10 | 9 | 100 |
p.asian.90 | 0 | 0 | 1 | 3 | 3 | 94 |
p.hs.edu.90 | 0 | 69 | 74 | 74 | 80 | 100 |
p.col.edu.90 | 0 | 10 | 18 | 22 | 30 | 100 |
p.prof.90 | 0 | 17 | 25 | 27 | 34 | 100 |
p.unemp.90 | 0 | 4 | 5 | 7 | 8 | 64 |
pov.rate.90 | 0 | 4 | 8 | 12 | 16 | 100 |
p.white.00 | 0 | 47 | 78 | 67 | 91 | 100 |
p.black.00 | 0 | 1 | 4 | 14 | 14 | 100 |
p.hisp.00 | 0 | 2 | 4 | 13 | 15 | 100 |
p.asian.00 | 0 | 1 | 2 | 5 | 5 | 95 |
p.hs.edu.00 | 0 | 67 | 72 | 72 | 77 | 100 |
p.col.edu.00 | 0 | 12 | 21 | 26 | 36 | 100 |
p.prof.00 | 0 | 23 | 31 | 34 | 43 | 100 |
p.unemp.00 | 0 | 3 | 5 | 6 | 8 | 100 |
pov.rate.00 | 0 | 4 | 9 | 12 | 17 | 100 |
metro.mhv.pct.90 | 1 | 20 | 41 | 45 | 68 | 100 |
metro.mhv.pct.00 | 1 | 20 | 41 | 45 | 68 | 100 |
metro.median.pay.90 | 14,871 | 28,906 | 32,457 | 32,924 | 35,833 | 52,374 |
metro.median.pay.00 | 23,012 | 39,457 | 43,139 | 45,054 | 49,522 | 73,701 |
metro.mhv.pct.change | -99 | -5 | 0 | 0 | 6 | 99 |
pay.change | 4,930 | 9,775 | 11,441 | 12,130 | 14,001 | 26,211 |
race.change | -100 | -12 | -5 | -8 | -2 | 100 |
metro.race.rank.90 | 1 | 20 | 41 | 45 | 68 | 100 |
_
The indicators for gentrification: 1. Metro tracts with home values
that were less than the average 2. Metro tracts with
higher levels of diversity than the average 3. Metro
tracts with home values that incresed more than the
overall city gains. 4. Metro tracts with faster growth than the national
average of 25% 5. Metro tracts that had an increase of white residents
>3%
Utilizing this model, we identified 377 of 17,560 (or 2.15%)
tracts that fit the criteria for advanced gentrification.
## [1] 377
## [1] 17560
## [1] 0.02146925
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | NA’s |
---|---|---|---|---|---|---|
-26395 | -18.15 | 1.059 | -6.082 | 17.35 | 100 | 198 |
The 377 tracts that were identified as experiencing advanced gentrification experienced drastic economic changes and demographic changes which likely led to a cultural change in the communities.
## GEOID POP statea countya tracta pnhwht12 pnhblk12 phisp12 pntv12
## 1 41005020302 4448 41 005 020302 82.47 0.90 6.72 0.00
## 2 41005020303 5107 41 005 020303 88.70 0.40 3.43 0.00
## 3 41005020304 5651 41 005 020304 78.93 0.56 3.24 0.00
## 4 41005020401 6127 41 005 020401 83.86 0.15 11.25 0.94
## 5 41005020403 4223 41 005 020403 92.80 0.94 1.48 0.00
## 6 41005020404 3971 41 005 020404 90.94 0.85 5.92 0.00
## pasian12 phaw12 pindia12 pchina12 pfilip12 pjapan12 pkorea12 pviet12 p15wht12
## 1 9.03 0 0.00 2.04 0.00 1.40 0.50 5.75 14.32
## 2 4.72 0 0.17 0.00 0.00 0.27 3.80 0.00 14.11
## 3 15.95 0 3.35 8.45 0.56 0.85 1.30 0.00 22.27
## 4 2.16 0 0.00 0.48 0.23 0.64 0.04 0.00 15.75
## 5 1.69 0 0.47 0.86 0.00 0.29 0.08 0.00 22.95
## 6 2.05 0 0.00 0.15 2.72 0.15 0.00 0.00 14.18
## p65wht12 p15blk12 p65blk12 p15hsp12 p65hsp12 p15ntv12 p65ntv12 p15asn12
## 1 10.30 38.24 0.00 40.16 0.00 13.60773 11.37886 31.97
## 2 17.65 0.00 61.90 0.00 6.74 13.60773 11.37886 10.20
## 3 7.78 25.00 0.00 0.00 11.23 13.60773 11.37886 36.02
## 4 14.73 0.00 0.00 49.72 0.00 0.00000 35.56000 4.31
## 5 12.14 22.22 38.89 21.05 0.00 41.38000 0.00000 0.00
## 6 27.96 100.00 0.00 20.92 0.00 13.60773 11.37886 32.00
## p65asn12 pmex12 pcuban12 ppr12 pruanc12 pitanc12 pgeanc12 piranc12 pscanc12
## 1 18.31 6.46 0.00 0 1.38 7.31 11.91 5.96 5.82
## 2 0.00 2.66 0.00 0 0.98 2.43 15.43 7.15 6.79
## 3 5.88 1.93 0.00 0 0.21 2.31 11.37 8.75 6.02
## 4 0.00 6.49 0.71 0 0.60 1.93 13.99 7.80 8.34
## 5 27.69 0.26 0.00 0 0.00 2.00 11.42 12.54 4.63
## 6 0.00 5.10 0.00 0 1.00 4.50 14.41 8.06 7.52
## pfb12 pnat12 p10imm12 prufb12 pitfb12 pgefb12 pirfb12 pscfb12 polang12 plep12
## 1 11.36 8.31 1.06 0.50 0.00 0.48 0 0.24 18.28 1.50
## 2 12.90 8.35 3.88 0.00 0.00 0.73 0 0.00 18.90 2.69
## 3 16.33 10.58 7.43 0.21 0.26 0.38 0 0.23 19.96 5.04
## 4 7.78 4.01 1.81 0.00 0.00 0.37 0 0.00 11.79 1.84
## 5 7.05 5.05 2.52 0.44 0.00 0.21 0 0.00 8.45 1.13
## 6 6.01 4.77 0.00 0.00 0.00 0.54 0 0.00 5.58 0.65
## phs12 pcol12 punemp12 pflabf12 pprof12 pmanuf12 psemp12 pvet12 p65pov12
## 1 14.34 49.38 12.95 68.95 56.94 10.87 22.60 7.20 0.29
## 2 9.22 67.86 8.83 51.24 60.43 8.72 12.06 10.34 0.48
## 3 12.73 65.82 10.88 65.94 57.71 11.36 11.69 8.80 0.00
## 4 21.32 53.97 12.58 63.51 54.64 8.61 22.10 6.93 0.90
## 5 6.95 74.09 8.95 58.17 66.92 11.22 15.13 9.67 0.00
## 6 10.09 60.67 7.54 46.97 57.20 13.04 23.17 13.51 0.36
## ppov12 pwpov12 pnapov12 pfmpov12 pbpov12 phpov12 papov12 pvac12 pown12
## 1 5.27 6.35 22.60183 0.00 0 0.39 0.00 5.18 59.72
## 2 8.66 7.78 22.60183 4.64 0 13.86 20.82 10.84 53.29
## 3 7.70 8.14 22.60183 5.34 0 7.49 6.44 1.19 68.70
## 4 6.36 7.46 4.44000 1.33 0 0.55 0.00 3.63 75.69
## 5 8.23 7.83 0.00000 4.95 0 1.75 55.38 1.56 94.26
## 6 2.39 2.62 22.60183 1.04 0 0.00 0.00 3.35 90.22
## pmulti12 p30old12 p18und12 p60up12 p75up12 pmar12 pwds12 pfhh12 p10yrs12
## 1 27.41 52.35 21.95 14.14 5.32 55.74 18.50 5.03 60.80
## 2 49.45 46.80 17.95 26.19 10.53 48.19 22.08 11.54 75.60
## 3 30.40 13.86 29.20 16.69 1.89 65.48 9.53 3.37 66.56
## 4 9.62 77.59 22.58 21.19 5.43 55.92 19.62 8.65 67.29
## 5 0.00 48.48 28.45 18.99 3.20 70.22 8.04 4.95 58.84
## 6 4.20 77.68 21.11 35.46 8.22 62.38 20.75 4.79 52.45
## ageblk12 agentv12 agewht12 agehsp12 india12 filip12 japan12 korea12 viet12
## 1 34 0 3115 254 0 0 53 19 217
## 2 21 0 4600 178 9 0 14 197 0
## 3 32 0 4549 187 193 32 49 75 0
## 4 7 45 4033 541 0 11 31 2 0
## 5 36 29 3568 57 18 0 11 3 0
## 6 28 0 3011 196 0 90 5 0 0
## pop12 nhwht12 nhblk12 ntv12 hisp12 asian12 haw12 china12 a15wht12 a65wht12
## 1 3777 3115 34 0 254 341 0 77 446 321
## 2 5186 4600 21 0 178 245 0 0 649 812
## 3 5763 4549 32 0 187 919 0 487 1013 354
## 4 4809 4033 7 45 541 104 0 23 635 594
## 5 3845 3568 36 0 57 65 0 33 819 433
## 6 3311 3011 28 0 196 68 0 5 427 842
## a15blk12 a65blk12 a15hsp12 a65hsp12 a15ntv12 a65ntv12 ageasn12 a15asn12
## 1 13 0 102 0 0 0 366 117
## 2 0 13 0 12 0 0 245 25
## 3 8 0 0 21 0 0 919 331
## 4 0 0 269 0 0 16 116 5
## 5 8 14 12 0 12 0 65 0
## 6 28 0 41 0 0 0 100 32
## a65asn12 mex12 pr12 cuban12 geanc12 iranc12 itanc12 ruanc12 fb12 nat12 itfb12
## 1 67 244 0 0 450 225 276 52 429 314 0
## 2 0 138 0 0 800 371 126 51 669 433 0
## 3 54 111 0 0 655 504 133 12 941 610 15
## 4 0 312 0 34 673 375 93 29 374 193 0
## 5 18 10 0 0 439 482 77 0 271 194 0
## 6 0 169 0 0 477 267 149 33 199 158 0
## rufb12 ag5up12 irfb12 gefb12 scanc12 n10imm12 olang12 lep12 scfb12 ag25up12
## 1 19 3660 0 18 220 40 669 55 9 2426
## 2 0 5020 0 38 352 201 949 135 0 3914
## 3 12 5475 0 22 347 428 1093 276 13 3809
## 4 0 4562 0 18 401 87 538 84 0 3372
## 5 17 3633 0 8 178 97 307 41 0 2547
## 6 0 3224 0 18 249 0 180 21 0 2517
## dfmpov12 hh12 hinc12 hincb12 hincw12 hinch12 incpc12 ag18cv12 vet12
## 1 954 1574 72672 49940.72 66932 74506 36643 2932 211
## 2 1335 2492 72500 19519.00 73177 64034 45204 4255 440
## 3 1574 2246 92572 250001.00 89219 81317 47287 4080 359
## 4 1283 2073 62879 49940.72 62331 141023 40156 3723 258
## 5 1112 1324 135326 49940.72 135163 165588 57300 2751 266
## 6 961 1472 92461 49940.72 93333 53056 56517 2612 353
## empclf12 dpov12 npov12 dbpov12 nbpov12 dnapov12 nnapov12 dwpov12 nwpov12
## 1 1960 3759 198 31 0 0 0 3100 197
## 2 2570 5163 447 21 0 0 0 4589 357
## 3 2807 5740 442 32 0 0 0 4545 370
## 4 2403 4799 305 7 0 45 2 4023 300
## 5 1738 3841 316 36 0 29 0 3564 279
## 6 1472 3311 79 28 0 0 0 3011 79
## dhpov12 nhpov12 hhb12 hhw12 hhh12 hs12 col12 clf12 unemp12 dflabf12 flabf12
## 1 254 1 0 1418 69 348 1198 2240 290 1636 1128
## 2 166 23 21 2209 57 361 2656 2741 242 2457 1259
## 3 187 14 13 1897 87 485 2507 3088 336 2234 1473
## 4 541 3 0 1884 115 719 1820 2695 339 1913 1215
## 5 57 1 14 1235 44 177 1887 1821 163 1444 840
## 6 196 0 0 1440 32 254 1527 1512 114 1401 658
## prof12 manuf12 semp12 hha12 hinca12 n65pov12 nfmpov12 napov12 dapov12
## 1 1116 213 443 76 100313.00 11 0 0 366
## 2 1553 224 310 98 75400.00 25 62 51 245
## 3 1620 319 328 237 159375.00 0 84 58 900
## 4 1313 207 531 56 83462.00 43 17 0 116
## 5 1163 195 263 21 12386.00 0 55 36 65
## 6 842 192 341 0 79531.26 12 10 0 100
## family12 hu12 vac12 ohu12 own12 rent12 dmulti12 mrent12 mhmval12 multi12
## 1 954 1660 86 1574 940 634 1660 950 407000 455
## 2 1335 2795 303 2492 1328 1164 2795 1037 407300 1382
## 3 1574 2273 27 2246 1543 703 2273 967 509400 691
## 4 1283 2151 78 2073 1569 504 2151 1045 369500 207
## 5 1112 1345 21 1324 1248 76 1345 2001 668900 0
## 6 961 1523 51 1472 1328 144 1523 939 486100 64
## h30old12 h10yrs12 a18und12 a60up12 a75up12 ag15up12 X12.Mar wds12 fhh12
## 1 869 957 829 534 201 3102 1729 574 48
## 2 1308 1884 931 1358 546 4501 2169 994 154
## 3 315 1495 1683 962 109 4398 2880 419 53
## 4 1669 1395 1086 1019 261 3859 2158 757 111
## 5 652 779 1094 730 123 2948 2070 237 55
## 6 1183 772 699 1174 272 2815 1756 584 46
## pop.w cluster
## 1 0.4942222 3
## 2 0.5674444 1
## 3 0.6278889 1
## 4 0.6807778 1
## 5 0.4692222 1
## 6 0.4412222 1
## [1] 412
## Variable(s) "pct.change" contains positive and negative values, so midpoint is set to 0. Set midpoint = NA to show the full spectrum of the color palette.
## Geographical Distribution of Median Home Values
The highest
valued home are located south and west of Portland’s downtown area, with
a smaller numner in the south east and north east corner. Interestingly,
the biggest changes in median home values occurred closer to the
downtown areas and throughout the south eastern tracts. However, the
loss in median home values was concentrated the most in the northern
tracts.