Descriptive Analysis of Neighborhood Change

Neighborhood Change


Chapter 2 is an examination of the national trends in median home values from 1990 to 2000. Included in the analysis is a selection of variables to measure gentrification nationally and metro areas.

Metrics: raw data


The raw data originated from the Longitudinal Tabulated Database (LTD) that uses the long-form census from 1970 to 2010, and the meta-data. The data dictionary was generated from the LTD & merged with the census dataset. The purposes of this study, the years before 1990 were dropped. The spatial files were merged with the census data & the ACS data to create the dorling chloropeth maps.

## 
## rural urban 
## 12971 59722


Identify Common Variables


Next, the team identified the common variables to use in the analysis.

## [1] "SHARED VARIABLES:"
##   [1] "a15asn"  "a15blk"  "a15hsp"  "a15ntv"  "a15wht"  "a18und"  "a60asn" 
##   [8] "a60blk"  "a60hsp"  "a60ntv"  "a60up"   "a60wht"  "a75up"   "ag15up" 
##  [15] "ag25up"  "ag5up"   "ageasn"  "ageblk"  "agehsp"  "agentv"  "agewht" 
##  [22] "asian"   "china"   "clf"     "cni16u"  "col"     "cuban"   "dapov"  
##  [29] "dbpov"   "dflabf"  "dfmpov"  "dhpov"   "dis"     "dmulti"  "dnapov" 
##  [36] "dpov"    "dwpov"   "empclf"  "family"  "fb"      "fhh"     "filip"  
##  [43] "flabf"   "geanc"   "gefb"    "h10yrs"  "h30old"  "haw"     "hh"     
##  [50] "hha"     "hhb"     "hhh"     "hhw"     "hinc"    "hinca"   "hincb"  
##  [57] "hinch"   "hincw"   "hisp"    "hs"      "hu"      "incpc"   "india"  
##  [64] "iranc"   "irfb"    "itanc"   "itfb"    "japan"   "korea"   "lep"    
##  [71] "manuf"   "mar"     "mex"     "mhmval"  "mrent"   "multi"   "n10imm" 
##  [78] "n65pov"  "napov"   "nat"     "nbpov"   "nfmpov"  "nhblk"   "nhpov"  
##  [85] "nhwht"   "nnapov"  "npov"    "ntv"     "nwpov"   "ohu"     "olang"  
##  [92] "own"     "pop"     "pr"      "prof"    "rent"    "ruanc"   "rufb"   
##  [99] "scanc"   "scfb"    "semp"    "tractid" "unemp"   "vac"     "vet"    
## [106] "viet"    "wds"    
## [1] "NOT SHARED:"
## [1] "ag16cv"  "ag18cv"  "hu00sp"  "hu90sp"  "ohu00sp" "ohu90sp" "pop90.1"
##     type variables
## 1 shared    a15asn
## 2 shared    a15blk
## 3 shared    a15hsp
## 4 shared    a15ntv
## 5 shared    a15wht
## 6 shared    a18und


## Create Dataset for Analysis
To facilitate the analysis, 23 variables were selected for the model and nine variables were created as a proportion of the total population.


### General quantile variable analysis

Statistic Min Pctl(25) Median Mean Pctl(75) Max
mhmval90 0 58,800 86,500 112,399 141,800 500,001
mhmval00 0 81,600 119,900 144,738 173,894 1,000,001
hinc00 2,499 33,000 43,825 47,657 58,036 200,001
hu00 0 1,102 1,519 1,570 1,999 11,522
own00 0 542 902 939 1,289 4,911
rent00 0 195 398 516 712 8,544
empclf00 0 1,205 1,756 1,820 2,373 10,334
clf00 0 1,302 1,865 1,930 2,502 11,251
unemp00 0 51 87 110 140 6,405
prof00 0 299 539 637 873 6,610
dpov00 0 2,671 3,718 3,804 4,871 23,892
npov00 0 149 304 452 601 5,515
ag25up00 0 1,763 2,451 2,520 3,224 17,974
hs00 0 665 1,071 1,155 1,552 8,909
col00 0 243 492 665 923 9,313
pop00.x 0 2,751 3,802 3,901 4,976 36,206
nhwht00 0 1,308 2,514 2,591 3,713 20,619
nhblk00 0 41 141 522 527 14,039
hisp00 0 55 153 547 533 13,391
asian00 0 22 65 189 183 9,491
p.white 0 47 78 67 91 100
p.black 0 1 4 14 14 100
p.hisp 0 2 4 13 15 100
p.asian 0 1 2 5 5 95
p.hs 0 67 72 72 77 100
p.col 0 12 21 26 36 100
p.prof 0 23 31 34 43 100
p.unemp 0 3 5 6 8 100
pov.rate 0 4 9 12 17 100
__, _ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , _ and _
Statistic Min Pctl(25) Median Mean Pctl(75) Max
mhmval90 0 58,800 86,500 112,399 141,800 500,001
mhmval00 0 81,600 119,900 144,738 173,894 1,000,001
hinc00 2,499 33,000 43,825 47,657 58,036 200,001
hu00 0 1,102 1,519 1,570 1,999 11,522
own00 0 542 902 939 1,289 4,911
rent00 0 195 398 516 712 8,544
empclf00 0 1,205 1,756 1,820 2,373 10,334
clf00 0 1,302 1,865 1,930 2,502 11,251
unemp00 0 51 87 110 140 6,405
prof00 0 299 539 637 873 6,610
dpov00 0 2,671 3,718 3,804 4,871 23,892
npov00 0 149 304 452 601 5,515
ag25up00 0 1,763 2,451 2,520 3,224 17,974
hs00 0 665 1,071 1,155 1,552 8,909
col00 0 243 492 665 923 9,313
pop00.x 0 2,751 3,802 3,901 4,976 36,206
nhwht00 0 1,308 2,514 2,591 3,713 20,619
nhblk00 0 41 141 522 527 14,039
hisp00 0 55 153 547 533 13,391
asian00 0 22 65 189 183 9,491
p.white 0 47 78 67 91 100
p.black 0 1 4 14 14 100
p.hisp 0 2 4 13 15 100
p.asian 0 1 2 5 5 95
p.hs 0 67 72 72 77 100
p.col 0 12 21 26 36 100
p.prof 0 23 31 34 43 100
p.unemp 0 3 5 6 8 100
pov.rate 0 4 9 12 17 100

_ ### Exploration of Median Home Value Below is a statistical description of the 1990 & 2000 MHV, corrected for inflation.

Statistic Min Pctl(25) Median Mean Pctl(75) Max
MedianHomeValue1990 0 77,256 113,651 147,679 186,308 656,941
MedianHomeValue2000 0 81,600 119,900 144,738 173,894 1,000,001
Change.90.to.00 -656,941 -22,553 882 -2,941 19,580 1,000,001
__, _ , , , _ and _
Statistic Min Pctl(25) Median Mean Pctl(75) Max
MedianHomeValue1990 0 77,256 113,651 147,679 186,308 656,941
MedianHomeValue2000 0 81,600 119,900 144,738 173,894 1,000,001
Change.90.to.00 -656,941 -22,553 882 -2,941 19,580 1,000,001

_
## Histogram of the MHV
The historgram below shows the median home value increased $882 from 1990 to 2000, & the mean increase was $2,941.


## Compare the MHV distribution of 1990 to 2000


## Change in MHV 1990-2000

It’s necessary to look at the percentage of change of the house values, not just the amount of median home value increases to contextualize the amount of growth in a given census tract. Additionally, tracts with an mean home value of less the $10k initially but increase to the normal distribution are problematic because they skew the distribution. Additionally, without more data than we have available, it’s not possible to know if those values are accurate. The best practice at this stage is to determine how many tracts are affected and filter them out of the dataset.

##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's 
## -1.00000 -0.15550  0.00904  0.05509  0.20782 28.45915      145
## [1] 26
Table continues below
tractid mhmval90 mhmval00 hinc00 hu00 own00 rent00
fips-01-097-000402 67489 593427 5714 719 7.005 683
fips-04-019-000100 73036 625000 9464 455 18 392
fips-12-099-002600 63800 625000 21944 144 5 124
fips-13-121-002100 32500 261100 14363 799 54 698
fips-17-031-842200 21602 281776 24702 1251 58 757
fips-17-167-001400 55000 1e+06 12321 667 8 524
Table continues below
empclf00 clf00 unemp00 prof00 dpov00 npov00 ag25up00 hs00
260 449 189 17 1953 1575 577 483
250 295 45 96 615 301 553 312
124 136 12 17 419 163 313 236
643 758 115 270 1604 699 1053 501
591 881 290 193 2922 1697 1192 770
257 257 0 117 580 182 764 551
Table continues below
col00 pop00.x nhwht00 nhblk00 hisp00 asian00 cbsa
6.001 2092 7 2070 13 1 33660
114 605 390 42 143 9 46060
18 414 254 120 36 2 48424
298 1573 317 1073 38 134 12060
193 2783 173 2524 72 10 16974
125 928 661 230 11 21 44100
Table continues below
cbsaname p.white p.black p.hisp p.asian p.hs
Mobile, AL 0.3346 98.95 0.6214 0.04781 84.75
Tucson, AZ 64.46 6.942 23.64 1.488 77.03
West Palm Beach-Boca Raton-Boynton FL 61.35 28.99 8.696 0.4831 81.15
Atlanta-Sandy Springs-Marietta, GA 20.15 68.21 2.416 8.519 75.88
Chicago-Naperville-Joliet, IL 6.216 90.69 2.587 0.3593 80.79
Springfield, IL 71.23 24.78 1.185 2.263 88.48
p.col p.prof p.unemp pov.rate
1.04 6.539 42.09 80.64
20.61 38.4 15.25 48.94
5.751 13.71 8.824 38.9
28.3 41.99 15.17 43.58
16.19 32.66 32.92 58.08
16.36 45.53 0 31.38

A total of 26 tracts had an increase of more than 500% between 1990 & 2000. These are the observations that will be filtered out of the analysis.

Plot the percent change variable

## Group the Growth Rates by Metro Area

cbsaname ave.change.d growth
Corvallis, OR $73,784 76.24
Portland-Vancouver-Beaverton, OR-WA $68,742 72.6
Salt Lake City, UT $61,688 69.81
Boulder, CO $95,086 69.34
Provo-Orem, UT $60,623 68.62
Salem, OR $49,059 62.02
Eugene-Springfield, OR $51,452 61.87
Fort Collins-Loveland, CO $57,614 57.04
Longview, WA $41,105 55.78
Missoula, MT $45,872 55.07
Jackson, MI $28,460 54.13
Greeley, CO $41,882 52.39
Wenatchee, WA $46,144 51.15
Detroit-Livonia-Dearborn, MI $29,104 50.07
Yakima, WA $31,055 50.04
Ogden-Clearfield, UT $42,624 49.2
Denver-Aurora, CO $52,596 48.63
Monroe, MI $42,470 48.06
Bay City, MI $26,924 47.72
Logan, UT-ID $35,923 47.11
Eau Claire, WI $28,048 43.68
Madison, WI $43,258 42.8
Sioux Falls, SD $31,411 41.77
Grand Junction, CO $34,669 41.55
Mount Vernon-Anacortes, WA a $42,331 41.26


According to Baum-Snow et al. two major risk factors for gentrification are not being met and will lead to the decrease of central city home values between 1990 & 2000:
1. A statistically significant increase in housing the cost at the 90th percentile. 2. Increasing nearby neighborhood rent.

Measuring Gentrification

Selection of Gentrification Variables


The categories for the selected variables included:

  1. Home Value change & growth
  2. Socio-economic status
  3. Employment
  4. Poverty rate
  5. Education status
  6. Race & Ethnicity
type variables
shared a15asn
shared a15blk
shared a15hsp
shared a15ntv
shared a15wht
shared a18und

Variable Transformations

For the 1990 & 2000 variables listed above, the same transformations were conducted to find the percentages of the variable in the populations & used to measure the percentage of tracts that underwent gentrification.

Statistic Min Pctl(25) Median Mean Pctl(75) Max
mhv.90 11,657 77,519 113,782 148,038 186,571 656,941
mhv.00 0 81,600 119,900 144,738 173,894 1,000,001
mhv.change -656,941 -22,638 835 -3,432 19,464 963,869
pct.change -100 -16 1 6 21 2,846
p.white.90 0 64 87 74 95 100
p.black.90 0 1 3 12 10 100
p.hisp.90 0 1 3 10 9 100
p.asian.90 0 0 1 3 3 94
p.hs.edu.90 0 69 74 74 80 100
p.col.edu.90 0 10 18 22 30 100
p.prof.90 0 17 25 27 34 100
p.unemp.90 0 4 5 7 8 64
pov.rate.90 0 4 8 12 16 100
p.white.00 0 47 78 67 91 100
p.black.00 0 1 4 14 14 100
p.hisp.00 0 2 4 13 15 100
p.asian.00 0 1 2 5 5 95
p.hs.edu.00 0 67 72 72 77 100
p.col.edu.00 0 12 21 26 36 100
p.prof.00 0 23 31 34 43 100
p.unemp.00 0 3 5 6 8 100
pov.rate.00 0 4 9 12 17 100
metro.mhv.pct.90 1 20 41 45 68 100
metro.mhv.pct.00 1 20 41 45 68 100
metro.median.pay.90 14,871 28,906 32,457 32,924 35,833 52,374
metro.median.pay.00 23,012 39,457 43,139 45,054 49,522 73,701
metro.mhv.pct.change -99 -5 0 0 6 99
pay.change 4,930 9,775 11,441 12,130 14,001 26,211
race.change -100 -12 -5 -8 -2 100
metro.race.rank.90 1 20 41 45 68 100
__, _ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , _ and _
Statistic Min Pctl(25) Median Mean Pctl(75) Max
mhv.90 11,657 77,519 113,782 148,038 186,571 656,941
mhv.00 0 81,600 119,900 144,738 173,894 1,000,001
mhv.change -656,941 -22,638 835 -3,432 19,464 963,869
pct.change -100 -16 1 6 21 2,846
p.white.90 0 64 87 74 95 100
p.black.90 0 1 3 12 10 100
p.hisp.90 0 1 3 10 9 100
p.asian.90 0 0 1 3 3 94
p.hs.edu.90 0 69 74 74 80 100
p.col.edu.90 0 10 18 22 30 100
p.prof.90 0 17 25 27 34 100
p.unemp.90 0 4 5 7 8 64
pov.rate.90 0 4 8 12 16 100
p.white.00 0 47 78 67 91 100
p.black.00 0 1 4 14 14 100
p.hisp.00 0 2 4 13 15 100
p.asian.00 0 1 2 5 5 95
p.hs.edu.00 0 67 72 72 77 100
p.col.edu.00 0 12 21 26 36 100
p.prof.00 0 23 31 34 43 100
p.unemp.00 0 3 5 6 8 100
pov.rate.00 0 4 9 12 17 100
metro.mhv.pct.90 1 20 41 45 68 100
metro.mhv.pct.00 1 20 41 45 68 100
metro.median.pay.90 14,871 28,906 32,457 32,924 35,833 52,374
metro.median.pay.00 23,012 39,457 43,139 45,054 49,522 73,701
metro.mhv.pct.change -99 -5 0 0 6 99
pay.change 4,930 9,775 11,441 12,130 14,001 26,211
race.change -100 -12 -5 -8 -2 100
metro.race.rank.90 1 20 41 45 68 100

_

Operationalizing Gentrification

The indicators for gentrification: 1. Metro tracts with home values that were less than the average 2. Metro tracts with higher levels of diversity than the average 3. Metro tracts with home values that incresed more than the overall city gains. 4. Metro tracts with faster growth than the national average of 25% 5. Metro tracts that had an increase of white residents >3%
Utilizing this model, we identified 377 of 17,560 (or 2.15%) tracts that fit the criteria for advanced gentrification.

## [1] 377
## [1] 17560
## [1] 0.02146925
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
-26395 -18.15 1.059 -6.082 17.35 100 198

Discussion

The 377 tracts that were identified as experiencing advanced gentrification experienced drastic economic changes and demographic changes which likely led to a cultural change in the communities.

Spatial Visualization

##         GEOID  POP statea countya tracta pnhwht12 pnhblk12 phisp12 pntv12
## 1 41005020302 4448     41     005 020302    82.47     0.90    6.72   0.00
## 2 41005020303 5107     41     005 020303    88.70     0.40    3.43   0.00
## 3 41005020304 5651     41     005 020304    78.93     0.56    3.24   0.00
## 4 41005020401 6127     41     005 020401    83.86     0.15   11.25   0.94
## 5 41005020403 4223     41     005 020403    92.80     0.94    1.48   0.00
## 6 41005020404 3971     41     005 020404    90.94     0.85    5.92   0.00
##   pasian12 phaw12 pindia12 pchina12 pfilip12 pjapan12 pkorea12 pviet12 p15wht12
## 1     9.03      0     0.00     2.04     0.00     1.40     0.50    5.75    14.32
## 2     4.72      0     0.17     0.00     0.00     0.27     3.80    0.00    14.11
## 3    15.95      0     3.35     8.45     0.56     0.85     1.30    0.00    22.27
## 4     2.16      0     0.00     0.48     0.23     0.64     0.04    0.00    15.75
## 5     1.69      0     0.47     0.86     0.00     0.29     0.08    0.00    22.95
## 6     2.05      0     0.00     0.15     2.72     0.15     0.00    0.00    14.18
##   p65wht12 p15blk12 p65blk12 p15hsp12 p65hsp12 p15ntv12 p65ntv12 p15asn12
## 1    10.30    38.24     0.00    40.16     0.00 13.60773 11.37886    31.97
## 2    17.65     0.00    61.90     0.00     6.74 13.60773 11.37886    10.20
## 3     7.78    25.00     0.00     0.00    11.23 13.60773 11.37886    36.02
## 4    14.73     0.00     0.00    49.72     0.00  0.00000 35.56000     4.31
## 5    12.14    22.22    38.89    21.05     0.00 41.38000  0.00000     0.00
## 6    27.96   100.00     0.00    20.92     0.00 13.60773 11.37886    32.00
##   p65asn12 pmex12 pcuban12 ppr12 pruanc12 pitanc12 pgeanc12 piranc12 pscanc12
## 1    18.31   6.46     0.00     0     1.38     7.31    11.91     5.96     5.82
## 2     0.00   2.66     0.00     0     0.98     2.43    15.43     7.15     6.79
## 3     5.88   1.93     0.00     0     0.21     2.31    11.37     8.75     6.02
## 4     0.00   6.49     0.71     0     0.60     1.93    13.99     7.80     8.34
## 5    27.69   0.26     0.00     0     0.00     2.00    11.42    12.54     4.63
## 6     0.00   5.10     0.00     0     1.00     4.50    14.41     8.06     7.52
##   pfb12 pnat12 p10imm12 prufb12 pitfb12 pgefb12 pirfb12 pscfb12 polang12 plep12
## 1 11.36   8.31     1.06    0.50    0.00    0.48       0    0.24    18.28   1.50
## 2 12.90   8.35     3.88    0.00    0.00    0.73       0    0.00    18.90   2.69
## 3 16.33  10.58     7.43    0.21    0.26    0.38       0    0.23    19.96   5.04
## 4  7.78   4.01     1.81    0.00    0.00    0.37       0    0.00    11.79   1.84
## 5  7.05   5.05     2.52    0.44    0.00    0.21       0    0.00     8.45   1.13
## 6  6.01   4.77     0.00    0.00    0.00    0.54       0    0.00     5.58   0.65
##   phs12 pcol12 punemp12 pflabf12 pprof12 pmanuf12 psemp12 pvet12 p65pov12
## 1 14.34  49.38    12.95    68.95   56.94    10.87   22.60   7.20     0.29
## 2  9.22  67.86     8.83    51.24   60.43     8.72   12.06  10.34     0.48
## 3 12.73  65.82    10.88    65.94   57.71    11.36   11.69   8.80     0.00
## 4 21.32  53.97    12.58    63.51   54.64     8.61   22.10   6.93     0.90
## 5  6.95  74.09     8.95    58.17   66.92    11.22   15.13   9.67     0.00
## 6 10.09  60.67     7.54    46.97   57.20    13.04   23.17  13.51     0.36
##   ppov12 pwpov12 pnapov12 pfmpov12 pbpov12 phpov12 papov12 pvac12 pown12
## 1   5.27    6.35 22.60183     0.00       0    0.39    0.00   5.18  59.72
## 2   8.66    7.78 22.60183     4.64       0   13.86   20.82  10.84  53.29
## 3   7.70    8.14 22.60183     5.34       0    7.49    6.44   1.19  68.70
## 4   6.36    7.46  4.44000     1.33       0    0.55    0.00   3.63  75.69
## 5   8.23    7.83  0.00000     4.95       0    1.75   55.38   1.56  94.26
## 6   2.39    2.62 22.60183     1.04       0    0.00    0.00   3.35  90.22
##   pmulti12 p30old12 p18und12 p60up12 p75up12 pmar12 pwds12 pfhh12 p10yrs12
## 1    27.41    52.35    21.95   14.14    5.32  55.74  18.50   5.03    60.80
## 2    49.45    46.80    17.95   26.19   10.53  48.19  22.08  11.54    75.60
## 3    30.40    13.86    29.20   16.69    1.89  65.48   9.53   3.37    66.56
## 4     9.62    77.59    22.58   21.19    5.43  55.92  19.62   8.65    67.29
## 5     0.00    48.48    28.45   18.99    3.20  70.22   8.04   4.95    58.84
## 6     4.20    77.68    21.11   35.46    8.22  62.38  20.75   4.79    52.45
##   ageblk12 agentv12 agewht12 agehsp12 india12 filip12 japan12 korea12 viet12
## 1       34        0     3115      254       0       0      53      19    217
## 2       21        0     4600      178       9       0      14     197      0
## 3       32        0     4549      187     193      32      49      75      0
## 4        7       45     4033      541       0      11      31       2      0
## 5       36       29     3568       57      18       0      11       3      0
## 6       28        0     3011      196       0      90       5       0      0
##   pop12 nhwht12 nhblk12 ntv12 hisp12 asian12 haw12 china12 a15wht12 a65wht12
## 1  3777    3115      34     0    254     341     0      77      446      321
## 2  5186    4600      21     0    178     245     0       0      649      812
## 3  5763    4549      32     0    187     919     0     487     1013      354
## 4  4809    4033       7    45    541     104     0      23      635      594
## 5  3845    3568      36     0     57      65     0      33      819      433
## 6  3311    3011      28     0    196      68     0       5      427      842
##   a15blk12 a65blk12 a15hsp12 a65hsp12 a15ntv12 a65ntv12 ageasn12 a15asn12
## 1       13        0      102        0        0        0      366      117
## 2        0       13        0       12        0        0      245       25
## 3        8        0        0       21        0        0      919      331
## 4        0        0      269        0        0       16      116        5
## 5        8       14       12        0       12        0       65        0
## 6       28        0       41        0        0        0      100       32
##   a65asn12 mex12 pr12 cuban12 geanc12 iranc12 itanc12 ruanc12 fb12 nat12 itfb12
## 1       67   244    0       0     450     225     276      52  429   314      0
## 2        0   138    0       0     800     371     126      51  669   433      0
## 3       54   111    0       0     655     504     133      12  941   610     15
## 4        0   312    0      34     673     375      93      29  374   193      0
## 5       18    10    0       0     439     482      77       0  271   194      0
## 6        0   169    0       0     477     267     149      33  199   158      0
##   rufb12 ag5up12 irfb12 gefb12 scanc12 n10imm12 olang12 lep12 scfb12 ag25up12
## 1     19    3660      0     18     220       40     669    55      9     2426
## 2      0    5020      0     38     352      201     949   135      0     3914
## 3     12    5475      0     22     347      428    1093   276     13     3809
## 4      0    4562      0     18     401       87     538    84      0     3372
## 5     17    3633      0      8     178       97     307    41      0     2547
## 6      0    3224      0     18     249        0     180    21      0     2517
##   dfmpov12 hh12 hinc12   hincb12 hincw12 hinch12 incpc12 ag18cv12 vet12
## 1      954 1574  72672  49940.72   66932   74506   36643     2932   211
## 2     1335 2492  72500  19519.00   73177   64034   45204     4255   440
## 3     1574 2246  92572 250001.00   89219   81317   47287     4080   359
## 4     1283 2073  62879  49940.72   62331  141023   40156     3723   258
## 5     1112 1324 135326  49940.72  135163  165588   57300     2751   266
## 6      961 1472  92461  49940.72   93333   53056   56517     2612   353
##   empclf12 dpov12 npov12 dbpov12 nbpov12 dnapov12 nnapov12 dwpov12 nwpov12
## 1     1960   3759    198      31       0        0        0    3100     197
## 2     2570   5163    447      21       0        0        0    4589     357
## 3     2807   5740    442      32       0        0        0    4545     370
## 4     2403   4799    305       7       0       45        2    4023     300
## 5     1738   3841    316      36       0       29        0    3564     279
## 6     1472   3311     79      28       0        0        0    3011      79
##   dhpov12 nhpov12 hhb12 hhw12 hhh12 hs12 col12 clf12 unemp12 dflabf12 flabf12
## 1     254       1     0  1418    69  348  1198  2240     290     1636    1128
## 2     166      23    21  2209    57  361  2656  2741     242     2457    1259
## 3     187      14    13  1897    87  485  2507  3088     336     2234    1473
## 4     541       3     0  1884   115  719  1820  2695     339     1913    1215
## 5      57       1    14  1235    44  177  1887  1821     163     1444     840
## 6     196       0     0  1440    32  254  1527  1512     114     1401     658
##   prof12 manuf12 semp12 hha12   hinca12 n65pov12 nfmpov12 napov12 dapov12
## 1   1116     213    443    76 100313.00       11        0       0     366
## 2   1553     224    310    98  75400.00       25       62      51     245
## 3   1620     319    328   237 159375.00        0       84      58     900
## 4   1313     207    531    56  83462.00       43       17       0     116
## 5   1163     195    263    21  12386.00        0       55      36      65
## 6    842     192    341     0  79531.26       12       10       0     100
##   family12 hu12 vac12 ohu12 own12 rent12 dmulti12 mrent12 mhmval12 multi12
## 1      954 1660    86  1574   940    634     1660     950   407000     455
## 2     1335 2795   303  2492  1328   1164     2795    1037   407300    1382
## 3     1574 2273    27  2246  1543    703     2273     967   509400     691
## 4     1283 2151    78  2073  1569    504     2151    1045   369500     207
## 5     1112 1345    21  1324  1248     76     1345    2001   668900       0
## 6      961 1523    51  1472  1328    144     1523     939   486100      64
##   h30old12 h10yrs12 a18und12 a60up12 a75up12 ag15up12 X12.Mar wds12 fhh12
## 1      869      957      829     534     201     3102    1729   574    48
## 2     1308     1884      931    1358     546     4501    2169   994   154
## 3      315     1495     1683     962     109     4398    2880   419    53
## 4     1669     1395     1086    1019     261     3859    2158   757   111
## 5      652      779     1094     730     123     2948    2070   237    55
## 6     1183      772      699    1174     272     2815    1756   584    46
##       pop.w cluster
## 1 0.4942222       3
## 2 0.5674444       1
## 3 0.6278889       1
## 4 0.6807778       1
## 5 0.4692222       1
## 6 0.4412222       1
## [1] 412

## Variable(s) "pct.change" contains positive and negative values, so midpoint is set to 0. Set midpoint = NA to show the full spectrum of the color palette.

## Geographical Distribution of Median Home Values
The highest valued home are located south and west of Portland’s downtown area, with a smaller numner in the south east and north east corner. Interestingly, the biggest changes in median home values occurred closer to the downtown areas and throughout the south eastern tracts. However, the loss in median home values was concentrated the most in the northern tracts.