Library

# Load packages
library(here)        # relative filepaths for reproducibility
library(tidyverse)   # data wrangling
library(stringi)     # string wrangling
library(kableExtra)  # table formatting
library(tidycensus)  # census data

API Key and Variable Import

# Load API key, assign to TidyCensus Package
source(here::here("analysis/password.R"))
census_api_key(.census_api_key)
import::here( "author",
              "census_division",
              "fips_region_assignment",
              "rank_variables",
              "svi_theme_variables",
              "svi_theme_flags",
             # notice the use of here::here() that points to the .R file
             # where all these R objects are created
             .from = here::here("analysis/project_data_steps_Jazzy.R"),
             .character_only = TRUE)

Data

# Load SVI data sets
svi_2010 <- readRDS(here::here("data/raw/Census_Data_SVI/svi_2010_trt10.rds"))
svi_2020 <- readRDS(here::here("data/raw/Census_Data_SVI/svi_2020_trt10.rds"))
svi_2010 %>% colnames()
##  [1] "GEOID_2010_trt"         "E_TOTPOP_10"            "E_HU_10"               
##  [4] "E_HH_10"                "E_POV150_10"            "ET_POVSTATUS_10"       
##  [7] "EP_POV150_10"           "EPL_POV150_10"          "E_UNEMP_10"            
## [10] "ET_EMPSTATUS_10"        "EP_UNEMP_10"            "EPL_UNEMP_10"          
## [13] "E_HBURD_OWN_10"         "ET_HOUSINGCOST_OWN_10"  "EP_HBURD_OWN_10"       
## [16] "EPL_HBURD_OWN_10"       "E_HBURD_RENT_10"        "ET_HOUSINGCOST_RENT_10"
## [19] "EP_HBURD_RENT_10"       "EPL_HBURD_RENT_10"      "E_HBURD_10"            
## [22] "ET_HOUSINGCOST_10"      "EP_HBURD_10"            "EPL_HBURD_10"          
## [25] "E_NOHSDP_10"            "ET_EDSTATUS_10"         "EP_NOHSDP_10"          
## [28] "EPL_NOHSDP_10"          "E_UNINSUR_12"           "ET_INSURSTATUS_12"     
## [31] "EP_UNINSUR_12"          "EPL_UNINSUR_12"         "E_AGE65_10"            
## [34] "EP_AGE65_10"            "EPL_AGE65_10"           "E_AGE17_10"            
## [37] "EP_AGE17_10"            "EPL_AGE17_10"           "E_DISABL_12"           
## [40] "ET_DISABLSTATUS_12"     "EP_DISABL_12"           "EPL_DISABL_12"         
## [43] "E_SNGPNT_10"            "ET_FAMILIES_10"         "EP_SNGPNT_10"          
## [46] "EPL_SNGPNT_10"          "E_LIMENG_10"            "ET_POPAGE5UP_10"       
## [49] "EP_LIMENG_10"           "EPL_LIMENG_10"          "E_MINRTY_10"           
## [52] "ET_POPETHRACE_10"       "EP_MINRTY_10"           "EPL_MINRTY_10"         
## [55] "E_STRHU_10"             "E_MUNIT_10"             "EP_MUNIT_10"           
## [58] "EPL_MUNIT_10"           "E_MOBILE_10"            "EP_MOBILE_10"          
## [61] "EPL_MOBILE_10"          "E_CROWD_10"             "ET_OCCUPANTS_10"       
## [64] "EP_CROWD_10"            "EPL_CROWD_10"           "E_NOVEH_10"            
## [67] "ET_KNOWNVEH_10"         "EP_NOVEH_10"            "EPL_NOVEH_10"          
## [70] "E_GROUPQ_10"            "ET_HHTYPE_10"           "EP_GROUPQ_10"          
## [73] "EPL_GROUPQ_10"
svi_2010 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10
01001020100 1809 771 696 297 1809 16.41791 NA 36 889 4.049494 NA 127 598 21.23746 NA 47 98 47.95918 NA 174 696 25.00000 NA 196 1242 15.780998 NA 186 1759 10.574190 NA 222 12.271973 NA 445 24.59923 NA 298 1335 22.32210 NA 27 545 4.954128 NA 36 1705 2.1114370 NA 385 1809 21.282477 NA 771 0 0.0000000 NA 92 11.9325551 NA 0 696 0.0000000 NA 50 696 7.183908 NA 0 1809 0 NA
01001020200 2020 816 730 495 1992 24.84940 NA 68 834 8.153477 NA 49 439 11.16173 NA 105 291 36.08247 NA 154 730 21.09589 NA 339 1265 26.798419 NA 313 2012 15.556660 NA 204 10.099010 NA 597 29.55446 NA 359 1515 23.69637 NA 132 456 28.947368 NA 15 1890 0.7936508 NA 1243 2020 61.534653 NA 816 0 0.0000000 NA 34 4.1666667 NA 13 730 1.7808219 NA 115 730 15.753425 NA 0 2020 0 NA
01001020300 3543 1403 1287 656 3533 18.56779 NA 93 1552 5.992268 NA 273 957 28.52665 NA 178 330 53.93939 NA 451 1287 35.04274 NA 346 2260 15.309734 NA 252 3102 8.123791 NA 487 13.745413 NA 998 28.16822 NA 371 2224 16.68165 NA 126 913 13.800657 NA 0 3365 0.0000000 NA 637 3543 17.979114 NA 1403 10 0.7127584 NA 2 0.1425517 NA 0 1287 0.0000000 NA 101 1287 7.847708 NA 0 3543 0 NA
01001020400 4840 1957 1839 501 4840 10.35124 NA 101 2129 4.744011 NA 310 1549 20.01291 NA 89 290 30.68966 NA 399 1839 21.69657 NA 274 3280 8.353658 NA 399 4293 9.294200 NA 955 19.731405 NA 1195 24.69008 NA 625 3328 18.78005 NA 152 1374 11.062591 NA 10 4537 0.2204100 NA 297 4840 6.136364 NA 1957 33 1.6862545 NA 25 1.2774655 NA 14 1839 0.7612833 NA 19 1839 1.033170 NA 0 4840 0 NA
01001020500 9938 3969 3741 1096 9938 11.02838 NA 188 4937 3.807981 NA 426 2406 17.70574 NA 528 1335 39.55056 NA 954 3741 25.50120 NA 293 5983 4.897209 NA 740 10110 7.319486 NA 837 8.422218 NA 3012 30.30791 NA 759 7155 10.60797 NA 476 2529 18.821669 NA 78 9297 0.8389803 NA 1970 9938 19.822902 NA 3969 306 7.7097506 NA 0 0.0000000 NA 7 3741 0.1871157 NA 223 3741 5.960973 NA 0 9938 0 NA
01001020600 3402 1456 1308 735 3402 21.60494 NA 134 1720 7.790698 NA 242 1032 23.44961 NA 62 276 22.46377 NA 304 1308 23.24159 NA 301 2151 13.993491 NA 355 3445 10.304790 NA 386 11.346267 NA 931 27.36626 NA 440 2439 18.04018 NA 143 924 15.476190 NA 4 3254 0.1229256 NA 723 3402 21.252205 NA 1456 18 1.2362637 NA 433 29.7390110 NA 16 1308 1.2232416 NA 28 1308 2.140673 NA 0 3402 0 NA
svi_2010 %>% nrow()
## [1] 73057
svi_2020 %>% colnames()
##  [1] "GEOID_2010_trt"         "E_TOTPOP_20"            "E_HU_20"               
##  [4] "E_HH_20"                "E_POV150_20"            "ET_POVSTATUS_20"       
##  [7] "EP_POV150_20"           "EPL_POV150_20"          "E_UNEMP_20"            
## [10] "ET_EMPSTATUS_20"        "EP_UNEMP_20"            "EPL_UNEMP_20"          
## [13] "E_HBURD_OWN_20"         "ET_HOUSINGCOST_OWN_20"  "EP_HBURD_OWN_20"       
## [16] "EPL_HBURD_OWN_20"       "E_HBURD_RENT_20"        "ET_HOUSINGCOST_RENT_20"
## [19] "EP_HBURD_RENT_20"       "EPL_HBURD_RENT_20"      "E_HBURD_20"            
## [22] "ET_HOUSINGCOST_20"      "EP_HBURD_20"            "EPL_HBURD_20"          
## [25] "E_NOHSDP_20"            "ET_EDSTATUS_20"         "EP_NOHSDP_20"          
## [28] "EPL_NOHSDP_20"          "E_UNINSUR_20"           "ET_INSURSTATUS_20"     
## [31] "EP_UNINSUR_20"          "EPL_UNINSUR_20"         "E_AGE65_20"            
## [34] "EP_AGE65_20"            "EPL_AGE65_20"           "E_AGE17_20"            
## [37] "EP_AGE17_20"            "EPL_AGE17_20"           "E_DISABL_20"           
## [40] "ET_DISABLSTATUS_20"     "EP_DISABL_20"           "EPL_DISABL_20"         
## [43] "E_SNGPNT_20"            "ET_FAMILIES_20"         "EP_SNGPNT_20"          
## [46] "EPL_SNGPNT_20"          "E_LIMENG_20"            "ET_POPAGE5UP_20"       
## [49] "EP_LIMENG_20"           "EPL_LIMENG_20"          "E_MINRTY_20"           
## [52] "ET_POPETHRACE_20"       "EP_MINRTY_20"           "EPL_MINRTY_20"         
## [55] "E_STRHU_20"             "E_MUNIT_20"             "EP_MUNIT_20"           
## [58] "EPL_MUNIT_20"           "E_MOBILE_20"            "EP_MOBILE_20"          
## [61] "EPL_MOBILE_20"          "E_CROWD_20"             "ET_OCCUPANTS_20"       
## [64] "EP_CROWD_20"            "EPL_CROWD_20"           "E_NOVEH_20"            
## [67] "ET_KNOWNVEH_20"         "EP_NOVEH_20"            "EPL_NOVEH_20"          
## [70] "E_GROUPQ_20"            "ET_HHTYPE_20"           "EP_GROUPQ_20"          
## [73] "EPL_GROUPQ_20"
svi_2020 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20
01001020100 1941 710 693 352 1941 18.13498 NA 18 852 2.112676 NA 81 507 15.976331 NA 63 186 33.87097 NA 144 693 20.77922 NA 187 1309 14.285714 NA 187 1941 9.634209 NA 295 15.19835 NA 415 21.38073 NA 391 1526 25.62254 NA 58 555 10.45045 NA 0 1843 0.0000000 NA 437 1941 22.51417 NA 710 0 0.0000000 NA 88 12.3943662 NA 0 693 0.0000000 NA 10 693 1.443001 NA 0 1941 0.000000 NA
01001020200 1757 720 573 384 1511 25.41363 NA 29 717 4.044630 NA 33 392 8.418367 NA 116 181 64.08840 NA 149 573 26.00349 NA 139 1313 10.586443 NA 91 1533 5.936073 NA 284 16.16392 NA 325 18.49744 NA 164 1208 13.57616 NA 42 359 11.69916 NA 0 1651 0.0000000 NA 1116 1757 63.51736 NA 720 3 0.4166667 NA 5 0.6944444 NA 9 573 1.5706806 NA 57 573 9.947644 NA 212 1757 12.066022 NA
01001020300 3694 1464 1351 842 3694 22.79372 NA 53 1994 2.657974 NA 117 967 12.099276 NA 147 384 38.28125 NA 264 1351 19.54108 NA 317 2477 12.797739 NA 127 3673 3.457664 NA 464 12.56091 NA 929 25.14889 NA 473 2744 17.23761 NA 263 975 26.97436 NA 128 3586 3.5694367 NA 1331 3694 36.03140 NA 1464 26 1.7759563 NA 14 0.9562842 NA 35 1351 2.5906736 NA 42 1351 3.108808 NA 0 3694 0.000000 NA
01001020400 3539 1741 1636 503 3539 14.21305 NA 39 1658 2.352232 NA 219 1290 16.976744 NA 74 346 21.38728 NA 293 1636 17.90954 NA 173 2775 6.234234 NA 169 3529 4.788892 NA 969 27.38062 NA 510 14.41085 NA 670 3019 22.19278 NA 148 1137 13.01671 NA 89 3409 2.6107363 NA 454 3539 12.82848 NA 1741 143 8.2136703 NA 0 0.0000000 NA 10 1636 0.6112469 NA 72 1636 4.400978 NA 0 3539 0.000000 NA
01001020500 10674 4504 4424 1626 10509 15.47245 NA 81 5048 1.604596 NA 321 2299 13.962592 NA 711 2125 33.45882 NA 1032 4424 23.32731 NA 531 6816 7.790493 NA 301 10046 2.996217 NA 1613 15.11149 NA 2765 25.90407 NA 1124 7281 15.43744 NA 342 2912 11.74451 NA 52 9920 0.5241935 NA 2603 10674 24.38636 NA 4504 703 15.6083481 NA 29 0.6438721 NA 37 4424 0.8363472 NA 207 4424 4.679023 NA 176 10674 1.648866 NA
01001020600 3536 1464 1330 1279 3523 36.30429 NA 34 1223 2.780049 NA 321 1111 28.892889 NA 67 219 30.59361 NA 388 1330 29.17293 NA 306 2380 12.857143 NA 415 3496 11.870709 NA 547 15.46946 NA 982 27.77149 NA 729 2514 28.99761 NA 95 880 10.79545 NA 0 3394 0.0000000 NA 985 3536 27.85633 NA 1464 0 0.0000000 NA 364 24.8633880 NA 0 1330 0.0000000 NA 17 1330 1.278196 NA 0 3536 0.000000 NA
svi_2020 %>% nrow()
## [1] 73057

Functions Wrangling

svi_2010 <- fips_region_assignment(svi_2010)

svi_2010 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10
01001020100 01 001 020100 AL Alabama Autauga County 3 South Region 6 East South Central Division 1809 771 696 297 1809 16.41791 NA 36 889 4.049494 NA 127 598 21.23746 NA 47 98 47.95918 NA 174 696 25.00000 NA 196 1242 15.780998 NA 186 1759 10.574190 NA 222 12.271973 NA 445 24.59923 NA 298 1335 22.32210 NA 27 545 4.954128 NA 36 1705 2.1114370 NA 385 1809 21.282477 NA 771 0 0.0000000 NA 92 11.9325551 NA 0 696 0.0000000 NA 50 696 7.183908 NA 0 1809 0 NA
01001020200 01 001 020200 AL Alabama Autauga County 3 South Region 6 East South Central Division 2020 816 730 495 1992 24.84940 NA 68 834 8.153477 NA 49 439 11.16173 NA 105 291 36.08247 NA 154 730 21.09589 NA 339 1265 26.798419 NA 313 2012 15.556660 NA 204 10.099010 NA 597 29.55446 NA 359 1515 23.69637 NA 132 456 28.947368 NA 15 1890 0.7936508 NA 1243 2020 61.534653 NA 816 0 0.0000000 NA 34 4.1666667 NA 13 730 1.7808219 NA 115 730 15.753425 NA 0 2020 0 NA
01001020300 01 001 020300 AL Alabama Autauga County 3 South Region 6 East South Central Division 3543 1403 1287 656 3533 18.56779 NA 93 1552 5.992268 NA 273 957 28.52665 NA 178 330 53.93939 NA 451 1287 35.04274 NA 346 2260 15.309734 NA 252 3102 8.123791 NA 487 13.745413 NA 998 28.16822 NA 371 2224 16.68165 NA 126 913 13.800657 NA 0 3365 0.0000000 NA 637 3543 17.979114 NA 1403 10 0.7127584 NA 2 0.1425517 NA 0 1287 0.0000000 NA 101 1287 7.847708 NA 0 3543 0 NA
01001020400 01 001 020400 AL Alabama Autauga County 3 South Region 6 East South Central Division 4840 1957 1839 501 4840 10.35124 NA 101 2129 4.744011 NA 310 1549 20.01291 NA 89 290 30.68966 NA 399 1839 21.69657 NA 274 3280 8.353658 NA 399 4293 9.294200 NA 955 19.731405 NA 1195 24.69008 NA 625 3328 18.78005 NA 152 1374 11.062591 NA 10 4537 0.2204100 NA 297 4840 6.136364 NA 1957 33 1.6862545 NA 25 1.2774655 NA 14 1839 0.7612833 NA 19 1839 1.033170 NA 0 4840 0 NA
01001020500 01 001 020500 AL Alabama Autauga County 3 South Region 6 East South Central Division 9938 3969 3741 1096 9938 11.02838 NA 188 4937 3.807981 NA 426 2406 17.70574 NA 528 1335 39.55056 NA 954 3741 25.50120 NA 293 5983 4.897209 NA 740 10110 7.319486 NA 837 8.422218 NA 3012 30.30791 NA 759 7155 10.60797 NA 476 2529 18.821669 NA 78 9297 0.8389803 NA 1970 9938 19.822902 NA 3969 306 7.7097506 NA 0 0.0000000 NA 7 3741 0.1871157 NA 223 3741 5.960973 NA 0 9938 0 NA
01001020600 01 001 020600 AL Alabama Autauga County 3 South Region 6 East South Central Division 3402 1456 1308 735 3402 21.60494 NA 134 1720 7.790698 NA 242 1032 23.44961 NA 62 276 22.46377 NA 304 1308 23.24159 NA 301 2151 13.993491 NA 355 3445 10.304790 NA 386 11.346267 NA 931 27.36626 NA 440 2439 18.04018 NA 143 924 15.476190 NA 4 3254 0.1229256 NA 723 3402 21.252205 NA 1456 18 1.2362637 NA 433 29.7390110 NA 16 1308 1.2232416 NA 28 1308 2.140673 NA 0 3402 0 NA
svi_2020 <- fips_region_assignment(svi_2020)

svi_2020 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20
01001020100 01 001 020100 AL Alabama Autauga County 3 South Region 6 East South Central Division 1941 710 693 352 1941 18.13498 NA 18 852 2.112676 NA 81 507 15.976331 NA 63 186 33.87097 NA 144 693 20.77922 NA 187 1309 14.285714 NA 187 1941 9.634209 NA 295 15.19835 NA 415 21.38073 NA 391 1526 25.62254 NA 58 555 10.45045 NA 0 1843 0.0000000 NA 437 1941 22.51417 NA 710 0 0.0000000 NA 88 12.3943662 NA 0 693 0.0000000 NA 10 693 1.443001 NA 0 1941 0.000000 NA
01001020200 01 001 020200 AL Alabama Autauga County 3 South Region 6 East South Central Division 1757 720 573 384 1511 25.41363 NA 29 717 4.044630 NA 33 392 8.418367 NA 116 181 64.08840 NA 149 573 26.00349 NA 139 1313 10.586443 NA 91 1533 5.936073 NA 284 16.16392 NA 325 18.49744 NA 164 1208 13.57616 NA 42 359 11.69916 NA 0 1651 0.0000000 NA 1116 1757 63.51736 NA 720 3 0.4166667 NA 5 0.6944444 NA 9 573 1.5706806 NA 57 573 9.947644 NA 212 1757 12.066022 NA
01001020300 01 001 020300 AL Alabama Autauga County 3 South Region 6 East South Central Division 3694 1464 1351 842 3694 22.79372 NA 53 1994 2.657974 NA 117 967 12.099276 NA 147 384 38.28125 NA 264 1351 19.54108 NA 317 2477 12.797739 NA 127 3673 3.457664 NA 464 12.56091 NA 929 25.14889 NA 473 2744 17.23761 NA 263 975 26.97436 NA 128 3586 3.5694367 NA 1331 3694 36.03140 NA 1464 26 1.7759563 NA 14 0.9562842 NA 35 1351 2.5906736 NA 42 1351 3.108808 NA 0 3694 0.000000 NA
01001020400 01 001 020400 AL Alabama Autauga County 3 South Region 6 East South Central Division 3539 1741 1636 503 3539 14.21305 NA 39 1658 2.352232 NA 219 1290 16.976744 NA 74 346 21.38728 NA 293 1636 17.90954 NA 173 2775 6.234234 NA 169 3529 4.788892 NA 969 27.38062 NA 510 14.41085 NA 670 3019 22.19278 NA 148 1137 13.01671 NA 89 3409 2.6107363 NA 454 3539 12.82848 NA 1741 143 8.2136703 NA 0 0.0000000 NA 10 1636 0.6112469 NA 72 1636 4.400978 NA 0 3539 0.000000 NA
01001020500 01 001 020500 AL Alabama Autauga County 3 South Region 6 East South Central Division 10674 4504 4424 1626 10509 15.47245 NA 81 5048 1.604596 NA 321 2299 13.962592 NA 711 2125 33.45882 NA 1032 4424 23.32731 NA 531 6816 7.790493 NA 301 10046 2.996217 NA 1613 15.11149 NA 2765 25.90407 NA 1124 7281 15.43744 NA 342 2912 11.74451 NA 52 9920 0.5241935 NA 2603 10674 24.38636 NA 4504 703 15.6083481 NA 29 0.6438721 NA 37 4424 0.8363472 NA 207 4424 4.679023 NA 176 10674 1.648866 NA
01001020600 01 001 020600 AL Alabama Autauga County 3 South Region 6 East South Central Division 3536 1464 1330 1279 3523 36.30429 NA 34 1223 2.780049 NA 321 1111 28.892889 NA 67 219 30.59361 NA 388 1330 29.17293 NA 306 2380 12.857143 NA 415 3496 11.870709 NA 547 15.46946 NA 982 27.77149 NA 729 2514 28.99761 NA 95 880 10.79545 NA 0 3394 0.0000000 NA 985 3536 27.85633 NA 1464 0 0.0000000 NA 364 24.8633880 NA 0 1330 0.0000000 NA 17 1330 1.278196 NA 0 3536 0.000000 NA
# National
svi_2010_national <- rank_variables(svi_2010)
svi_2010_national %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10
01001020100 01 001 020100 AL Alabama Autauga County 3 South Region 6 East South Central Division 1809 771 696 297 1809 16.41791 0.3871 36 889 4.049494 0.1790 127 598 21.23746 0.20770 47 98 47.95918 0.5767 174 696 25.00000 0.18790 196 1242 15.780998 0.6093 186 1759 10.574190 0.3790 222 12.271973 0.4876 445 24.59923 0.5473 298 1335 22.32210 0.8454 27 545 4.954128 0.09275 36 1705 2.1114370 0.59040 385 1809 21.282477 0.4524 771 0 0.0000000 0.1224 92 11.9325551 0.8005 0 696 0.0000000 0.1238 50 696 7.183908 0.6134 0 1809 0 0.364
01001020200 01 001 020200 AL Alabama Autauga County 3 South Region 6 East South Central Division 2020 816 730 495 1992 24.84940 0.5954 68 834 8.153477 0.5754 49 439 11.16173 0.02067 105 291 36.08247 0.3019 154 730 21.09589 0.09312 339 1265 26.798419 0.8392 313 2012 15.556660 0.6000 204 10.099010 0.3419 597 29.55446 0.8192 359 1515 23.69637 0.8791 132 456 28.947368 0.83510 15 1890 0.7936508 0.40130 1243 2020 61.534653 0.7781 816 0 0.0000000 0.1224 34 4.1666667 0.6664 13 730 1.7808219 0.5406 115 730 15.753425 0.8382 0 2020 0 0.364
01001020300 01 001 020300 AL Alabama Autauga County 3 South Region 6 East South Central Division 3543 1403 1287 656 3533 18.56779 0.4443 93 1552 5.992268 0.3724 273 957 28.52665 0.45780 178 330 53.93939 0.7152 451 1287 35.04274 0.49930 346 2260 15.309734 0.5950 252 3102 8.123791 0.2596 487 13.745413 0.5868 998 28.16822 0.7606 371 2224 16.68165 0.6266 126 913 13.800657 0.46350 0 3365 0.0000000 0.09298 637 3543 17.979114 0.4049 1403 10 0.7127584 0.3015 2 0.1425517 0.4407 0 1287 0.0000000 0.1238 101 1287 7.847708 0.6443 0 3543 0 0.364
01001020400 01 001 020400 AL Alabama Autauga County 3 South Region 6 East South Central Division 4840 1957 1839 501 4840 10.35124 0.2177 101 2129 4.744011 0.2447 310 1549 20.01291 0.17080 89 290 30.68966 0.2044 399 1839 21.69657 0.10540 274 3280 8.353658 0.3205 399 4293 9.294200 0.3171 955 19.731405 0.8643 1195 24.69008 0.5530 625 3328 18.78005 0.7233 152 1374 11.062591 0.34710 10 4537 0.2204100 0.22560 297 4840 6.136364 0.1647 1957 33 1.6862545 0.3843 25 1.2774655 0.5516 14 1839 0.7612833 0.3564 19 1839 1.033170 0.1127 0 4840 0 0.364
01001020500 01 001 020500 AL Alabama Autauga County 3 South Region 6 East South Central Division 9938 3969 3741 1096 9938 11.02838 0.2364 188 4937 3.807981 0.1577 426 2406 17.70574 0.11050 528 1335 39.55056 0.3753 954 3741 25.50120 0.20140 293 5983 4.897209 0.1655 740 10110 7.319486 0.2211 837 8.422218 0.2408 3012 30.30791 0.8455 759 7155 10.60797 0.2668 476 2529 18.821669 0.63540 78 9297 0.8389803 0.41110 1970 9938 19.822902 0.4330 3969 306 7.7097506 0.6153 0 0.0000000 0.2198 7 3741 0.1871157 0.2535 223 3741 5.960973 0.5483 0 9938 0 0.364
01001020600 01 001 020600 AL Alabama Autauga County 3 South Region 6 East South Central Division 3402 1456 1308 735 3402 21.60494 0.5199 134 1720 7.790698 0.5436 242 1032 23.44961 0.28010 62 276 22.46377 0.1035 304 1308 23.24159 0.14070 301 2151 13.993491 0.5510 355 3445 10.304790 0.3656 386 11.346267 0.4232 931 27.36626 0.7200 440 2439 18.04018 0.6912 143 924 15.476190 0.52900 4 3254 0.1229256 0.19840 723 3402 21.252205 0.4519 1456 18 1.2362637 0.3507 433 29.7390110 0.9468 16 1308 1.2232416 0.4493 28 1308 2.140673 0.2298 0 3402 0 0.364
# National
svi_2020_national <- rank_variables(svi_2020)
svi_2020_national %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20
01001020100 01 001 020100 AL Alabama Autauga County 3 South Region 6 East South Central Division 1941 710 693 352 1941 18.13498 0.4630 18 852 2.112676 0.15070 81 507 15.976331 0.26320 63 186 33.87097 0.2913 144 693 20.77922 0.2230 187 1309 14.285714 0.6928 187 1941 9.634209 0.6617 295 15.19835 0.4601 415 21.38073 0.4681 391 1526 25.62254 0.9011 58 555 10.45045 0.3451 0 1843 0.0000000 0.09479 437 1941 22.51417 0.3902 710 0 0.0000000 0.1079 88 12.3943662 0.8263 0 693 0.0000000 0.09796 10 693 1.443001 0.1643 0 1941 0.000000 0.1831
01001020200 01 001 020200 AL Alabama Autauga County 3 South Region 6 East South Central Division 1757 720 573 384 1511 25.41363 0.6427 29 717 4.044630 0.41320 33 392 8.418367 0.03542 116 181 64.08840 0.9086 149 573 26.00349 0.4041 139 1313 10.586443 0.5601 91 1533 5.936073 0.4343 284 16.16392 0.5169 325 18.49744 0.2851 164 1208 13.57616 0.4127 42 359 11.69916 0.3998 0 1651 0.0000000 0.09479 1116 1757 63.51736 0.7591 720 3 0.4166667 0.2470 5 0.6944444 0.5106 9 573 1.5706806 0.46880 57 573 9.947644 0.7317 212 1757 12.066022 0.9549
01001020300 01 001 020300 AL Alabama Autauga County 3 South Region 6 East South Central Division 3694 1464 1351 842 3694 22.79372 0.5833 53 1994 2.657974 0.22050 117 967 12.099276 0.11370 147 384 38.28125 0.3856 264 1351 19.54108 0.1827 317 2477 12.797739 0.6460 127 3673 3.457664 0.2308 464 12.56091 0.3088 929 25.14889 0.7080 473 2744 17.23761 0.6211 263 975 26.97436 0.8234 128 3586 3.5694367 0.70770 1331 3694 36.03140 0.5515 1464 26 1.7759563 0.3675 14 0.9562842 0.5389 35 1351 2.5906736 0.60550 42 1351 3.108808 0.3415 0 3694 0.000000 0.1831
01001020400 01 001 020400 AL Alabama Autauga County 3 South Region 6 East South Central Division 3539 1741 1636 503 3539 14.21305 0.3472 39 1658 2.352232 0.17990 219 1290 16.976744 0.30880 74 346 21.38728 0.1037 293 1636 17.90954 0.1333 173 2775 6.234234 0.3351 169 3529 4.788892 0.3448 969 27.38062 0.9225 510 14.41085 0.1208 670 3019 22.19278 0.8194 148 1137 13.01671 0.4541 89 3409 2.6107363 0.64690 454 3539 12.82848 0.2364 1741 143 8.2136703 0.6028 0 0.0000000 0.2186 10 1636 0.6112469 0.28340 72 1636 4.400978 0.4538 0 3539 0.000000 0.1831
01001020500 01 001 020500 AL Alabama Autauga County 3 South Region 6 East South Central Division 10674 4504 4424 1626 10509 15.47245 0.3851 81 5048 1.604596 0.09431 321 2299 13.962592 0.17970 711 2125 33.45882 0.2836 1032 4424 23.32731 0.3109 531 6816 7.790493 0.4251 301 10046 2.996217 0.1894 1613 15.11149 0.4553 2765 25.90407 0.7494 1124 7281 15.43744 0.5253 342 2912 11.74451 0.4019 52 9920 0.5241935 0.35230 2603 10674 24.38636 0.4160 4504 703 15.6083481 0.7378 29 0.6438721 0.5037 37 4424 0.8363472 0.33420 207 4424 4.679023 0.4754 176 10674 1.648866 0.7598
01001020600 01 001 020600 AL Alabama Autauga County 3 South Region 6 East South Central Division 3536 1464 1330 1279 3523 36.30429 0.8215 34 1223 2.780049 0.23780 321 1111 28.892889 0.75870 67 219 30.59361 0.2305 388 1330 29.17293 0.5075 306 2380 12.857143 0.6480 415 3496 11.870709 0.7535 547 15.46946 0.4760 982 27.77149 0.8327 729 2514 28.99761 0.9488 95 880 10.79545 0.3601 0 3394 0.0000000 0.09479 985 3536 27.85633 0.4608 1464 0 0.0000000 0.1079 364 24.8633880 0.9300 0 1330 0.0000000 0.09796 17 1330 1.278196 0.1463 0 3536 0.000000 0.1831
# Regional
svi_2010_regional <- rank_variables(svi_2010, rank_by = "regional", location = "West Region")
svi_2010_regional %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10
02013000100 02 013 000100 AK Alaska Aleutians East Borough 4 West Region 9 Pacific Division 3703 474 267 1212 3695 32.801082 0.75680 111 3163 3.509327 0.11740 25 158 15.82278 0.03240 17 109 15.59633 0.04224 42 267 15.73034 0.01531 1082 3017 35.863441 0.8798 2060 3112 66.19537 0.9997 127 3.429652 0.05340 315 8.506616 0.04000 182 2849 6.388206 0.08106 50 165 30.303030 0.88690 1070 3617 29.5825270 0.9536 3492 3703 94.30192 0.9353 474 8 1.687764 0.3384 42 8.8607595 0.7721 7 267 2.621723 0.4631 77 267 28.8389513 0.97440 2969 3703 80.17823 0.9943
02016000100 02 016 000100 AK Alaska Aleutians West Census Area 4 West Region 9 Pacific Division 1774 1056 166 328 1231 26.645004 0.65280 15 1370 1.094890 0.01825 25 95 26.31579 0.18340 16 71 22.53521 0.07759 41 166 24.69880 0.07625 207 1330 15.563910 0.6204 484 973 49.74306 0.9952 53 2.987599 0.04081 182 10.259301 0.05208 147 747 19.678715 0.84870 19 96 19.791667 0.66880 79 1718 4.5983702 0.5482 1154 1774 65.05073 0.7186 1056 22 2.083333 0.3616 0 0.0000000 0.2283 10 166 6.024096 0.6826 84 166 50.6024096 0.99490 1324 1774 74.63360 0.9936
02016000200 02 016 000200 AK Alaska Aleutians West Census Area 4 West Region 9 Pacific Division 4485 507 355 1315 4469 29.424927 0.70470 87 3859 2.254470 0.04855 20 94 21.27660 0.08625 35 261 13.40996 0.03444 55 355 15.49296 0.01475 1292 3728 34.656652 0.8710 981 4256 23.04981 0.7611 186 4.147157 0.08056 384 8.561873 0.04031 235 3656 6.427790 0.08275 38 204 18.627451 0.63220 1458 4397 33.1589720 0.9696 3616 4485 80.62430 0.8295 507 85 16.765286 0.7273 32 6.3116371 0.7311 41 355 11.549296 0.8277 30 355 8.4507042 0.72540 3507 4485 78.19398 0.9941
02020000101 02 020 000101 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 5475 1957 1796 296 5463 5.418268 0.08155 229 2885 7.937608 0.53240 364 1522 23.91590 0.13070 39 274 14.23358 0.03708 403 1796 22.43875 0.05297 121 3476 3.481013 0.1379 863 5853 14.74458 0.4763 236 4.310502 0.08795 1614 29.479452 0.73720 524 4028 13.008937 0.52080 65 1496 4.344920 0.07846 13 5202 0.2499039 0.1070 759 5475 13.86301 0.1579 1957 0 0.000000 0.1131 167 8.5334696 0.7672 134 1796 7.461024 0.7327 11 1796 0.6124722 0.09953 0 5475 0.00000 0.3812
02020000102 02 020 000102 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 4240 1923 1654 286 4240 6.745283 0.11910 198 2385 8.301887 0.56480 275 1235 22.26721 0.10140 248 419 59.18854 0.76560 523 1654 31.62031 0.20010 242 2799 8.645945 0.3896 838 4982 16.82055 0.5611 259 6.108491 0.18900 1038 24.481132 0.48710 809 3707 21.823577 0.90420 97 1071 9.056956 0.25170 0 4007 0.0000000 0.0421 955 4240 22.52358 0.2947 1923 169 8.788351 0.5803 147 7.6443058 0.7537 33 1654 1.995163 0.3949 103 1654 6.2273277 0.62090 0 4240 0.00000 0.3812
02020000201 02 020 000201 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 4085 1543 1532 296 4085 7.246022 0.13510 46 2089 2.202011 0.04648 302 969 31.16615 0.30850 187 563 33.21492 0.18520 489 1532 31.91906 0.20740 164 2395 6.847599 0.3060 811 3466 23.39873 0.7701 133 3.255814 0.04808 1199 29.351285 0.73180 320 2468 12.965964 0.51760 171 1083 15.789474 0.53180 7 3810 0.1837270 0.0954 743 4085 18.18849 0.2314 1543 54 3.499676 0.4249 7 0.4536617 0.4768 32 1532 2.088773 0.4053 49 1532 3.1984334 0.39740 0 4085 0.00000 0.3812
# Regional
svi_2020_regional <- rank_variables(svi_2020, rank_by = "regional", location = "West Region")
svi_2020_regional %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20
02013000100 02 013 000100 AK Alaska Aleutians East Borough 4 West Region 9 Pacific Division 3389 1199 988 698 3379 20.656999 0.5776 86 2414 3.562552 0.3024 67 607 11.037891 0.03573 74 381 19.42257 0.06036 141 988 14.27126 0.02101 354 2646 13.378685 0.64780 1345 3384 39.745863 0.9988 381 11.242254 0.31650 443 13.07170 0.1024 339 2941.000 11.526692 0.3561 135 593.000 22.765599 0.7825 334 3276 10.1953602 0.78580 2939 3389.000 86.72175 0.8534 1199 38 3.169308 0.3895 69 5.7547957 0.7406 30 988 3.0364372 0.4421 220 988.000 22.267207 0.95820 1035 3389 30.5399823 0.9850
02016000100 02 016 000100 AK Alaska Aleutians West Census Area 4 West Region 9 Pacific Division 950 694 199 218 719 30.319889 0.7730 15 560 2.678571 0.1843 11 117 9.401709 0.02190 14 82 17.07317 0.04729 25 199 12.56281 0.01342 48 681 7.048458 0.40760 238 721 33.009709 0.9962 116 12.210526 0.37460 195 20.52632 0.4079 113 526.000 21.482890 0.8686 31 98.000 31.632653 0.9233 17 900 1.8888889 0.38640 713 950.000 75.05263 0.7532 694 17 2.449568 0.3573 0 0.0000000 0.2256 7 199 3.5175879 0.4846 68 199.000 34.170854 0.98650 274 950 28.8421053 0.9838
02016000200 02 016 000200 AK Alaska Aleutians West Census Area 4 West Region 9 Pacific Division 4758 1319 1107 398 4700 8.468085 0.1779 144 3404 4.230317 0.3891 111 245 45.306122 0.94670 93 862 10.78886 0.02255 204 1107 18.42818 0.06373 297 3527 8.420754 0.47660 699 4724 14.796782 0.8800 314 6.599412 0.08116 822 17.27617 0.2339 292 3902.000 7.483342 0.1022 99 662.000 14.954683 0.5536 433 4586 9.4417793 0.76800 3672 4758.000 77.17528 0.7705 1319 392 29.719485 0.8478 23 1.7437453 0.6232 146 1107 13.1887986 0.8497 96 1107.000 8.672087 0.75590 950 4758 19.9663724 0.9772
02020000101 02 020 000101 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 5772 2127 1917 416 5772 7.207207 0.1332 223 2691 8.286882 0.7934 296 1679 17.629541 0.16820 30 238 12.60504 0.02848 326 1917 17.00574 0.04385 74 4011 1.844926 0.08361 546 5733 9.523810 0.6946 692 11.988912 0.36100 1481 25.65835 0.6992 771 4252.330 18.131237 0.7612 94 1608.796 5.842877 0.1542 4 5425 0.0737327 0.08891 989 5772.331 17.13346 0.1416 2127 28 1.316408 0.2983 5 0.2350729 0.4599 9 1917 0.4694836 0.1302 24 1916.584 1.252228 0.17850 114 5772 1.9750520 0.8279
02020000102 02 020 000102 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 4743 1975 1681 633 4738 13.360067 0.3558 75 2465 3.042596 0.2298 383 1350 28.370370 0.59250 122 331 36.85801 0.25890 505 1681 30.04164 0.35500 205 3383 6.059710 0.35300 330 4638 7.115136 0.5427 653 13.767658 0.46540 1186 25.00527 0.6666 472 3447.726 13.690182 0.5134 182 1469.325 12.386640 0.4535 0 4485 0.0000000 0.04046 756 4743.330 15.93817 0.1243 1975 153 7.746835 0.5320 156 7.8987342 0.7792 17 1681 1.0113028 0.2071 0 1681.103 0.000000 0.02755 15 4743 0.3162555 0.5093
02020000201 02 020 000201 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 4707 1946 1835 706 4707 14.998938 0.4109 88 2269 3.878360 0.3427 219 793 27.616646 0.56120 527 1042 50.57582 0.58770 746 1835 40.65395 0.69090 194 2805 6.916221 0.39940 464 4274 10.856341 0.7531 257 5.459953 0.04952 1279 27.17230 0.7729 390 2999.274 13.003148 0.4650 72 1222.675 5.888728 0.1562 26 4201 0.6189003 0.20280 1282 4706.670 27.23794 0.2849 1946 76 3.905447 0.4167 2 0.1027749 0.4547 96 1835 5.2316076 0.6097 39 1834.897 2.125459 0.28940 0 4707 0.0000000 0.1626
# Divisional
svi_2010_divisional <- rank_variables(svi_2010, rank_by = "divisional", location = "Pacific Division")
svi_2010_divisional %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10
02013000100 02 013 000100 AK Alaska Aleutians East Borough 4 West Region 9 Pacific Division 3703 474 267 1212 3695 32.801082 0.75700 111 3163 3.509327 0.08691 25 158 15.82278 0.01337 17 109 15.59633 0.02605 42 267 15.73034 0.004754 1082 3017 35.863441 0.8542 2060 3112 66.19537 0.9999 127 3.429652 0.04240 315 8.506616 0.03961 182 2849 6.388206 0.07775 50 165 30.303030 0.88350 1070 3617 29.5825270 0.93700 3492 3703 94.30192 0.9141 474 8 1.687764 0.29250 42 8.8607595 0.8128 7 267 2.621723 0.4003 77 267 28.8389513 0.96850 2969 3703 80.17823 0.9940
02016000100 02 016 000100 AK Alaska Aleutians West Census Area 4 West Region 9 Pacific Division 1774 1056 166 328 1231 26.645004 0.65530 15 1370 1.094890 0.01369 25 95 26.31579 0.09653 16 71 22.53521 0.05099 41 166 24.69880 0.029080 207 1330 15.563910 0.5839 484 973 49.74306 0.9952 53 2.987599 0.03180 182 10.259301 0.05188 147 747 19.678715 0.86420 19 96 19.791667 0.66060 79 1718 4.5983702 0.46890 1154 1774 65.05073 0.6522 1056 22 2.083333 0.31610 0 0.0000000 0.2497 10 166 6.024096 0.6154 84 166 50.6024096 0.99320 1324 1774 74.63360 0.9935
02016000200 02 016 000200 AK Alaska Aleutians West Census Area 4 West Region 9 Pacific Division 4485 507 355 1315 4469 29.424927 0.70570 87 3859 2.254470 0.03381 20 94 21.27660 0.03822 35 261 13.40996 0.02120 55 355 15.49296 0.004567 1292 3728 34.656652 0.8445 981 4256 23.04981 0.7621 186 4.147157 0.06676 384 8.561873 0.03989 235 3656 6.427790 0.07933 38 204 18.627451 0.62370 1458 4397 33.1589720 0.95840 3616 4485 80.62430 0.7822 507 85 16.765286 0.69850 32 6.3116371 0.7700 41 355 11.549296 0.7760 30 355 8.4507042 0.69980 3507 4485 78.19398 0.9938
02020000101 02 020 000101 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 5475 1957 1796 296 5463 5.418268 0.08172 229 2885 7.937608 0.48540 364 1522 23.91590 0.06363 39 274 14.23358 0.02232 403 1796 22.43875 0.018830 121 3476 3.481013 0.1279 863 5853 14.74458 0.4836 236 4.310502 0.07411 1614 29.479452 0.75790 524 4028 13.008937 0.54240 65 1496 4.344920 0.06955 13 5202 0.2499039 0.07262 759 5475 13.86301 0.1072 1957 0 0.000000 0.09395 167 8.5334696 0.8076 134 1796 7.461024 0.6695 11 1796 0.6124722 0.08007 0 5475 0.00000 0.3743
02020000102 02 020 000102 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 4240 1923 1654 286 4240 6.745283 0.12010 198 2385 8.301887 0.51840 275 1235 22.26721 0.04612 248 419 59.18854 0.73210 523 1654 31.62031 0.108600 242 2799 8.645945 0.3645 838 4982 16.82055 0.5669 259 6.108491 0.17290 1038 24.481132 0.50340 809 3707 21.823577 0.91630 97 1071 9.056956 0.24130 0 4007 0.0000000 0.02799 955 4240 22.52358 0.2295 1923 169 8.788351 0.54130 147 7.6443058 0.7936 33 1654 1.995163 0.3402 103 1654 6.2273277 0.58930 0 4240 0.00000 0.3743
02020000201 02 020 000201 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 4085 1543 1532 296 4085 7.246022 0.13670 46 2089 2.202011 0.03307 302 969 31.16615 0.19620 187 563 33.21492 0.13830 489 1532 31.91906 0.113500 164 2395 6.847599 0.2875 811 3466 23.39873 0.7707 133 3.255814 0.03812 1199 29.351285 0.75230 320 2468 12.965964 0.53850 171 1083 15.789474 0.52510 7 3810 0.1837270 0.06378 743 4085 18.18849 0.1723 1543 54 3.499676 0.37950 7 0.4536617 0.5183 32 1532 2.088773 0.3498 49 1532 3.1984334 0.36020 0 4085 0.00000 0.3743
# Divisional
svi_2020_divisional <- rank_variables(svi_2020, rank_by = "divisional", location = "Pacific Division")
svi_2020_divisional %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20
02013000100 02 013 000100 AK Alaska Aleutians East Borough 4 West Region 9 Pacific Division 3389 1199 988 698 3379 20.656999 0.5925 86 2414 3.562552 0.2665 67 607 11.037891 0.01803 74 381 19.42257 0.04067 141 988 14.27126 0.006988 354 2646 13.378685 0.61070 1345 3384 39.745863 0.9997 381 11.242254 0.31390 443 13.07170 0.0988 339 2941.000 11.526692 0.3860 135 593.000 22.765599 0.7920 334 3276 10.1953602 0.72620 2939 3389.000 86.72175 0.81100 1199 38 3.169308 0.3474 69 5.7547957 0.7806 30 988 3.0364372 0.36010 220 988.000 22.267207 0.95270 1035 3389 30.5399823 0.9843
02016000100 02 016 000100 AK Alaska Aleutians West Census Area 4 West Region 9 Pacific Division 950 694 199 218 719 30.319889 0.7848 15 560 2.678571 0.1560 11 117 9.401709 0.01305 14 82 17.07317 0.03088 25 199 12.56281 0.003541 48 681 7.048458 0.37250 238 721 33.009709 0.9989 116 12.210526 0.37310 195 20.52632 0.4153 113 526.000 21.482890 0.8931 31 98.000 31.632653 0.9318 17 900 1.8888889 0.29830 713 950.000 75.05263 0.69000 694 17 2.449568 0.3163 0 0.0000000 0.2466 7 199 3.5175879 0.39980 68 199.000 34.170854 0.98260 274 950 28.8421053 0.9832
02016000200 02 016 000200 AK Alaska Aleutians West Census Area 4 West Region 9 Pacific Division 4758 1319 1107 398 4700 8.468085 0.1862 144 3404 4.230317 0.3539 111 245 45.306122 0.92700 93 862 10.78886 0.01250 204 1107 18.42818 0.024790 297 3527 8.420754 0.43840 699 4724 14.796782 0.9132 314 6.599412 0.07503 822 17.27617 0.2319 292 3902.000 7.483342 0.1088 99 662.000 14.954683 0.5563 433 4586 9.4417793 0.70570 3672 4758.000 77.17528 0.71070 1319 392 29.719485 0.8272 23 1.7437453 0.6618 146 1107 13.1887986 0.80180 96 1107.000 8.672087 0.73650 950 4758 19.9663724 0.9765
02020000101 02 020 000101 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 5772 2127 1917 416 5772 7.207207 0.1396 223 2691 8.286882 0.7821 296 1679 17.629541 0.08891 30 238 12.60504 0.01632 326 1917 17.00574 0.015840 74 4011 1.844926 0.07404 546 5733 9.523810 0.7456 692 11.988912 0.36010 1481 25.65835 0.7225 771 4252.330 18.131237 0.7949 94 1608.796 5.842877 0.1503 4 5425 0.0737327 0.05497 989 5772.331 17.13346 0.08922 2127 28 1.316408 0.2585 5 0.2350729 0.5017 9 1917 0.4694836 0.09085 24 1916.584 1.252228 0.15320 114 5772 1.9750520 0.8251
02020000102 02 020 000102 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 4743 1975 1681 633 4738 13.360067 0.3701 75 2465 3.042596 0.1971 383 1350 28.370370 0.47830 122 331 36.85801 0.20770 505 1681 30.04164 0.245400 205 3383 6.059710 0.32020 330 4638 7.115136 0.6017 653 13.767658 0.46830 1186 25.00527 0.6899 472 3447.726 13.690182 0.5484 182 1469.325 12.386640 0.4525 0 4485 0.0000000 0.02391 756 4743.330 15.93817 0.07455 1975 153 7.746835 0.4947 156 7.8987342 0.8173 17 1681 1.0113028 0.15640 0 1681.103 0.000000 0.02249 15 4743 0.3162555 0.4726
02020000201 02 020 000201 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 4707 1946 1835 706 4707 14.998938 0.4258 88 2269 3.878360 0.3073 219 793 27.616646 0.44320 527 1042 50.57582 0.53120 746 1835 40.65395 0.607400 194 2805 6.916221 0.36480 464 4274 10.856341 0.8018 257 5.459953 0.04652 1279 27.17230 0.7970 390 2999.274 13.003148 0.4994 72 1222.675 5.888728 0.1525 26 4201 0.6189003 0.13850 1282 4706.670 27.23794 0.21200 1946 76 3.905447 0.3758 2 0.1027749 0.4966 96 1835 5.2316076 0.52940 39 1834.897 2.125459 0.25860 0 4707 0.0000000 0.1370
# State
svi_2010_state <- rank_variables(svi_2010, rank_by = "state", location = "WA")
svi_2010_state %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10
53001950100 53 001 950100 WA Washington Adams County 4 West Region 9 Pacific Division 2625 1099 942 701 2408 29.11130 0.7827 89 1103 8.068903 0.611100 177 676 26.18343 0.21350 92 266 34.58647 0.23490 269 942 28.55626 0.1550 224 1900 11.789474 0.6671 406 2613 15.537696 0.6614 583 22.209524 0.9405 566 21.56190 0.3543 353 1933 18.26177 0.7271 96 673 14.26449 0.5239 11 2419 0.4547334 0.2111 228 2625 8.685714 0.12660 1099 67 6.096451 0.5107 97 8.826206 0.6803 22 942 2.3354565 0.6394 40 942 4.246284 0.5398 248 2625 9.447619 0.9384
53001950200 53 001 950200 WA Washington Adams County 4 West Region 9 Pacific Division 1785 812 680 574 1762 32.57662 0.8360 0 756 0.000000 0.003114 99 478 20.71130 0.07441 31 202 15.34653 0.03534 130 680 19.11765 0.0173 85 1114 7.630162 0.4318 139 1604 8.665835 0.2576 237 13.277311 0.6284 564 31.59664 0.9128 273 1145 23.84279 0.9093 74 483 15.32091 0.5787 23 1700 1.3529412 0.4173 226 1785 12.661064 0.25810 812 16 1.970443 0.3574 136 16.748769 0.8318 28 680 4.1176471 0.8090 7 680 1.029412 0.1626 0 1785 0.000000 0.3820
53001950300 53 001 950300 WA Washington Adams County 4 West Region 9 Pacific Division 6148 1779 1635 2676 6048 44.24603 0.9419 325 2508 12.958533 0.889300 297 1075 27.62791 0.26080 164 560 29.28571 0.14280 461 1635 28.19572 0.1446 1254 3209 39.077594 0.9779 2195 6832 32.128220 0.9827 484 7.872479 0.2394 2287 37.19909 0.9799 670 4392 15.25501 0.5540 161 1482 10.86370 0.3708 1271 5293 24.0128472 0.9882 4365 6148 70.998699 0.96820 1779 53 2.979202 0.4055 962 54.075323 0.9972 243 1635 14.8623853 0.9882 30 1635 1.834862 0.2782 0 6148 0.000000 0.3820
53001950400 53 001 950400 WA Washington Adams County 4 West Region 9 Pacific Division 2793 974 946 1155 2793 41.35338 0.9204 187 1379 13.560551 0.905900 104 430 24.18605 0.15160 227 516 43.99225 0.49000 331 946 34.98943 0.3882 584 1491 39.168343 0.9792 601 2616 22.974006 0.9017 287 10.275689 0.4235 901 32.25922 0.9287 274 1666 16.44658 0.6343 204 722 28.25485 0.8863 659 2548 25.8634223 0.9910 2038 2793 72.968135 0.97160 974 105 10.780288 0.6097 52 5.338809 0.5820 175 946 18.4989429 0.9958 39 946 4.122622 0.5308 0 2793 0.000000 0.3820
53001950500 53 001 950500 WA Washington Adams County 4 West Region 9 Pacific Division 4533 1496 1396 1857 4526 41.02961 0.9197 259 1954 13.254862 0.899000 385 921 41.80239 0.82820 246 475 51.78947 0.70060 631 1396 45.20057 0.8118 1099 2289 48.012232 0.9889 1006 4708 21.367884 0.8760 286 6.309287 0.1308 1783 39.33377 0.9889 374 2803 13.34285 0.4211 217 1238 17.52827 0.6535 761 3992 19.0631263 0.9702 3611 4533 79.660269 0.98820 1496 128 8.556150 0.5619 50 3.342246 0.5149 167 1396 11.9627507 0.9792 60 1396 4.297994 0.5446 0 4533 0.000000 0.3820
53003960100 53 003 960100 WA Washington Asotin County 4 West Region 9 Pacific Division 3933 1810 1554 525 3907 13.43742 0.3640 38 1705 2.228739 0.035290 369 1383 26.68113 0.22980 53 171 30.99415 0.17330 422 1554 27.15573 0.1142 171 2782 6.146657 0.3356 356 4044 8.803165 0.2701 690 17.543860 0.8415 993 25.24790 0.6069 393 3040 12.92763 0.3975 127 1190 10.67227 0.3597 17 3747 0.4536963 0.2104 123 3933 3.127384 0.01107 1810 0 0.000000 0.1097 170 9.392265 0.6920 12 1554 0.7722008 0.3017 0 1554 0.000000 0.0346 0 3933 0.000000 0.3820
# State
svi_2020_state <- rank_variables(svi_2020, rank_by = "state", location = "WA")
svi_2020_state %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20
53001950100 53 001 950100 WA Washington Adams County 4 West Region 9 Pacific Division 2606 1240 1099 605 2509 24.11319 0.7661 33 1101 2.997275 0.2692 190 762 24.93438 0.58340 110 337 32.640950 0.237700 300 1099 27.297543 0.37790 165 1789 9.22303 0.6694 146 2514 5.807478 0.5516 505 19.378358 0.73310 603 23.13891 0.6072 298 1911.019 15.59377 0.5038 91 620.0101 14.677180 0.6118 27 2495 1.082164 0.4053 463 2606.020 17.766554 0.26760 1240 91 7.3387097 0.5176 151 12.177419 0.8007 12 1099 1.091902 0.2699 101 1099.0137 9.1900586 0.7792 94 2606 3.6070606 0.9122
53001950200 53 001 950200 WA Washington Adams County 4 West Region 9 Pacific Division 1762 854 611 428 1762 24.29058 0.7737 31 802 3.865337 0.4042 41 347 11.81556 0.04172 10 263 3.802281 0.006237 51 610 8.360656 0.00346 189 1112 16.99640 0.9018 220 1763 12.478729 0.9190 228 12.939841 0.35820 454 25.76617 0.7732 247 1308.939 18.87025 0.7066 50 426.0483 11.735759 0.4830 19 1655 1.148036 0.4198 570 1761.795 32.353364 0.61130 854 0 0.0000000 0.1000 160 18.735363 0.8920 63 611 10.310966 0.9426 5 610.7908 0.8186109 0.1253 0 1762 0.0000000 0.1082
53001950300 53 001 950300 WA Washington Adams County 4 West Region 9 Pacific Division 6527 1853 1753 2094 6479 32.31980 0.8976 170 2669 6.369427 0.7391 314 1265 24.82213 0.57510 70 489 14.314928 0.039500 384 1754 21.892816 0.16120 1452 3577 40.59268 0.9903 1152 6480 17.777778 0.9716 788 12.072928 0.30360 2381 36.47924 0.9848 620 4098.527 15.12739 0.4803 366 1499.5286 24.407670 0.8561 1210 5966 20.281596 0.9882 5219 6527.382 79.955491 0.98340 1853 10 0.5396654 0.2429 1169 63.086886 0.9993 248 1753 14.147176 0.9779 58 1753.4163 3.3078282 0.4478 57 6527 0.8732955 0.6805
53001950400 53 001 950400 WA Washington Adams County 4 West Region 9 Pacific Division 3144 949 876 1319 3073 42.92223 0.9723 59 1228 4.804560 0.5412 99 405 24.44444 0.54940 171 471 36.305732 0.315300 270 876 30.821918 0.53150 498 1645 30.27356 0.9710 580 3073 18.874064 0.9813 308 9.796438 0.17430 1263 40.17176 0.9952 317 1810.000 17.51381 0.6346 232 690.0000 33.623188 0.9647 563 2809 20.042720 0.9876 2513 3144.000 79.930025 0.98270 949 111 11.6965227 0.6194 0 0.000000 0.1422 73 876 8.333333 0.9121 137 876.0000 15.6392694 0.9253 93 3144 2.9580153 0.8921
53001950500 53 001 950500 WA Washington Adams County 4 West Region 9 Pacific Division 5660 1786 1694 2276 5641 40.34746 0.9619 229 2502 9.152678 0.9038 169 899 18.79867 0.23090 247 795 31.069182 0.212100 416 1694 24.557261 0.25670 1047 2654 39.44989 0.9869 1007 5660 17.791519 0.9723 365 6.448763 0.04288 2241 39.59364 0.9938 611 3419.000 17.87072 0.6609 367 1364.0000 26.906158 0.8934 940 4913 19.132913 0.9834 4356 5660.000 76.961131 0.97720 1786 145 8.1187010 0.5370 85 4.759239 0.5972 223 1694 13.164109 0.9730 42 1694.0000 2.4793388 0.3509 14 5660 0.2473498 0.3928
53003960100 53 003 960100 WA Washington Asotin County 4 West Region 9 Pacific Division 4320 2079 1782 605 4320 14.00463 0.4567 109 1727 6.311523 0.7315 240 1645 14.58967 0.08693 53 137 38.686131 0.379100 293 1782 16.442200 0.03668 241 3157 7.63383 0.5733 244 4320 5.648148 0.5329 1337 30.949074 0.96130 968 22.40741 0.5422 662 3351.998 19.74941 0.7488 125 1283.9997 9.735205 0.3779 0 4156 0.000000 0.0491 346 4319.997 8.009265 0.03596 2079 11 0.5291005 0.2401 180 8.658009 0.7301 11 1782 0.617284 0.1761 43 1781.9995 2.4130197 0.3426 0 4320 0.0000000 0.1082
# County
svi_2010_county <- rank_variables(svi_2010, rank_by = "county", location = "Spokane County", state_abbr = "WA")
svi_2010_county %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10
53063000200 53 063 000200 WA Washington Spokane County 4 West Region 9 Pacific Division 5053 2023 1993 2321 5038 46.06987 0.8857 300 2314 12.964564 0.8286 367 1034 35.49323 0.8381 590 959 61.52242 0.9333 957 1993 48.01806 0.9048 507 3123 16.234390 0.9333 1218 4979 24.46274 0.9619 474 9.380566 0.2000 1203 23.80764 0.5048 955 3753 25.44631 0.9143 268 1223 21.91333 0.7524 156 4755 3.2807571 0.88570 1488 5053 29.447853 0.9810 2023 92 4.5477014 0.45710 10 0.4943154 0.3238 52 1993 2.6091320 0.8190 244 1993 12.242850 0.8476 76 5053 1.504057 0.7238
53063000300 53 063 000300 WA Washington Spokane County 4 West Region 9 Pacific Division 5028 2164 1961 1318 5012 26.29689 0.6381 148 2378 6.223717 0.4000 526 1338 39.31241 0.9048 338 623 54.25361 0.7143 864 1961 44.05915 0.7905 409 3298 12.401455 0.8190 1063 5065 20.98717 0.8952 567 11.276850 0.3714 1372 27.28719 0.8381 745 3747 19.88257 0.7238 396 1408 28.12500 0.8286 220 4624 4.7577855 0.94290 894 5028 17.780430 0.7905 2164 16 0.7393715 0.23810 0 0.0000000 0.1571 61 1961 3.1106578 0.8762 52 1961 2.651708 0.2762 0 5028 0.000000 0.3238
53063000400 53 063 000400 WA Washington Spokane County 4 West Region 9 Pacific Division 4055 1825 1738 1458 3917 37.22236 0.8000 260 1855 14.016172 0.8762 290 802 36.15960 0.8571 561 936 59.93590 0.8952 851 1738 48.96433 0.9333 379 2649 14.307286 0.8857 584 4217 13.84871 0.6190 603 14.870530 0.6667 1035 25.52404 0.6762 661 3045 21.70772 0.8095 317 981 32.31397 0.9143 21 3752 0.5597015 0.40950 754 4055 18.594328 0.8190 1825 236 12.9315068 0.64760 0 0.0000000 0.1571 0 1738 0.0000000 0.1095 198 1738 11.392405 0.8095 99 4055 2.441430 0.7810
53063000500 53 063 000500 WA Washington Spokane County 4 West Region 9 Pacific Division 3171 1554 1496 687 3160 21.74051 0.5238 137 1772 7.731377 0.5714 408 1104 36.95652 0.8762 147 392 37.50000 0.2762 555 1496 37.09893 0.6190 169 2248 7.517794 0.5048 390 3033 12.85856 0.5429 455 14.348786 0.6381 684 21.57048 0.3048 481 2431 19.78610 0.6952 240 831 28.88087 0.8571 0 2985 0.0000000 0.09524 422 3171 13.308105 0.6190 1554 12 0.7722008 0.24760 0 0.0000000 0.1571 26 1496 1.7379679 0.7143 117 1496 7.820856 0.6857 0 3171 0.000000 0.3238
53063000600 53 063 000600 WA Washington Spokane County 4 West Region 9 Pacific Division 2708 1243 1147 689 2708 25.44313 0.5905 36 1447 2.487906 0.0381 225 841 26.75386 0.5143 187 306 61.11111 0.9143 412 1147 35.91979 0.5810 142 1765 8.045326 0.5714 389 3095 12.56866 0.5238 326 12.038405 0.4476 597 22.04579 0.3429 449 2236 20.08050 0.7429 106 639 16.58842 0.5429 0 2545 0.0000000 0.09524 267 2708 9.859675 0.4000 1243 53 4.2638777 0.42860 0 0.0000000 0.1571 5 1147 0.4359198 0.2476 40 1147 3.487358 0.3810 0 2708 0.000000 0.3238
53063000700 53 063 000700 WA Washington Spokane County 4 West Region 9 Pacific Division 4877 2235 2046 683 4877 14.00451 0.3048 134 2553 5.248727 0.2381 346 1701 20.34098 0.1238 143 345 41.44928 0.4000 489 2046 23.90029 0.1048 231 3156 7.319392 0.4762 596 4901 12.16078 0.4381 584 11.974574 0.4190 1372 28.13205 0.8952 440 3592 12.24944 0.2095 287 1339 21.43391 0.7333 29 4463 0.6497871 0.45710 532 4877 10.908345 0.4952 2235 0 0.0000000 0.09524 0 0.0000000 0.1571 15 2046 0.7331378 0.4095 141 2046 6.891496 0.6095 0 4877 0.000000 0.3238
# County
svi_2020_county <- rank_variables(svi_2020, rank_by = "county", location = "Spokane County", state = "WA")
svi_2020_county %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20
53063000200 53 063 000200 WA Washington Spokane County 4 West Region 9 Pacific Division 4157 2068 1911 1779 4150 42.86747 0.9333 202 2200 9.181818 0.8190 308 1035 29.75845 0.8667 411 876 46.91781 0.5333 719 1911 37.62428 0.7143 279 2887 9.664011 0.8381 372 4157 8.948761 0.9048 431 10.36805 0.09524 815 19.60548 0.2952 751 3342 22.47157 0.8095 287 894 32.10291 0.9048 44 3853 1.1419673 0.6857 708 4157 17.03151 0.6000 2068 201 9.7195358 0.55240 7 0.3384913 0.3810 26 1911 1.3605442 0.4762 215 1911 11.250654 0.7810 6 4157 0.1443349 0.2381
53063000300 53 063 000300 WA Washington Spokane County 4 West Region 9 Pacific Division 5324 2229 2130 2010 5302 37.91022 0.9048 115 2646 4.346183 0.4476 562 1390 40.43165 0.9810 267 740 36.08108 0.2667 829 2130 38.92019 0.7714 479 3519 13.611821 0.9619 143 5324 2.685950 0.2000 615 11.55147 0.20000 1416 26.59654 0.8667 821 3908 21.00819 0.7619 473 1315 35.96958 0.9429 175 5068 3.4530387 0.9429 1192 5324 22.38918 0.7905 2229 69 3.0955585 0.35240 29 1.3010319 0.5905 89 2130 4.1784038 0.9143 119 2130 5.586855 0.5905 12 5324 0.2253944 0.3143
53063000400 53 063 000400 WA Washington Spokane County 4 West Region 9 Pacific Division 3853 1803 1638 1298 3691 35.16662 0.8381 249 1971 12.633181 0.9524 207 638 32.44514 0.8952 344 1000 34.40000 0.2095 551 1638 33.63858 0.6286 239 2629 9.090909 0.8286 453 3691 12.273097 0.9905 507 13.15858 0.30480 866 22.47599 0.5429 572 2825 20.24779 0.6857 329 807 40.76828 0.9810 121 3600 3.3611111 0.9333 942 3853 24.44848 0.8286 1803 347 19.2457016 0.73330 10 0.5546312 0.4381 41 1638 2.5030525 0.7429 159 1638 9.706960 0.7048 162 3853 4.2045160 0.8667
53063000500 53 063 000500 WA Washington Spokane County 4 West Region 9 Pacific Division 3522 1462 1447 867 3515 24.66572 0.6476 104 1848 5.627706 0.6381 235 1019 23.06183 0.5714 152 428 35.51402 0.2476 387 1447 26.74499 0.4000 190 2347 8.095441 0.7238 255 3510 7.264957 0.7714 471 13.37308 0.33330 938 26.63260 0.8762 355 2572 13.80249 0.2381 109 909 11.99120 0.3714 23 3225 0.7131783 0.5810 940 3522 26.68938 0.8952 1462 13 0.8891929 0.28570 0 0.0000000 0.1810 11 1447 0.7601935 0.3810 66 1447 4.561161 0.4857 7 3522 0.1987507 0.2952
53063000600 53 063 000600 WA Washington Spokane County 4 West Region 9 Pacific Division 3246 1322 1286 554 3180 17.42138 0.3905 103 1861 5.534659 0.6095 97 906 10.70640 0.0381 215 380 56.57895 0.8286 312 1286 24.26128 0.2667 128 2278 5.618964 0.5143 232 3226 7.191568 0.7524 339 10.44362 0.11430 723 22.27357 0.5238 449 2503 17.93847 0.5714 185 790 23.41772 0.7333 9 3023 0.2977175 0.3714 466 3246 14.35613 0.4667 1322 3 0.2269289 0.20000 8 0.6051437 0.4571 27 1286 2.0995334 0.6571 37 1286 2.877138 0.3524 5 3246 0.1540357 0.2571
53063000700 53 063 000700 WA Washington Spokane County 4 West Region 9 Pacific Division 5244 2285 2231 979 5244 18.66896 0.4381 315 3110 10.128617 0.8667 363 1581 22.96015 0.5619 255 650 39.23077 0.3524 618 2231 27.70058 0.4286 205 3615 5.670816 0.5238 448 5244 8.543097 0.8667 649 12.37605 0.25710 1034 19.71777 0.3143 573 4210 13.61045 0.2286 398 1419 28.04792 0.8286 1 4987 0.0200521 0.2000 674 5244 12.85278 0.3714 2285 0 0.0000000 0.09524 0 0.0000000 0.1810 7 2231 0.3137606 0.2286 107 2231 4.796056 0.5048 10 5244 0.1906941 0.2857
svi_2020_national <- svi_theme_variables(svi_2020_national)
svi_2020_national %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 SPL_THEME1 RPL_THEME1 SPL_THEME2 RPL_THEME2 SPL_THEME3 RPL_THEME3 SPL_THEME4 RPL_THEME4 SPL_THEMES RPL_THEMES
01001020100 01 001 020100 AL Alabama Autauga County 3 South Region 6 East South Central Division 1941 710 693 352 1941 18.13498 0.4630 18 852 2.112676 0.15070 81 507 15.976331 0.26320 63 186 33.87097 0.2913 144 693 20.77922 0.2230 187 1309 14.285714 0.6928 187 1941 9.634209 0.6617 295 15.19835 0.4601 415 21.38073 0.4681 391 1526 25.62254 0.9011 58 555 10.45045 0.3451 0 1843 0.0000000 0.09479 437 1941 22.51417 0.3902 710 0 0.0000000 0.1079 88 12.3943662 0.8263 0 693 0.0000000 0.09796 10 693 1.443001 0.1643 0 1941 0.000000 0.1831 2.19120 0.4084 2.26919 0.3503 0.3902 0.3869 1.37956 0.07216 6.23015 0.2314
01001020200 01 001 020200 AL Alabama Autauga County 3 South Region 6 East South Central Division 1757 720 573 384 1511 25.41363 0.6427 29 717 4.044630 0.41320 33 392 8.418367 0.03542 116 181 64.08840 0.9086 149 573 26.00349 0.4041 139 1313 10.586443 0.5601 91 1533 5.936073 0.4343 284 16.16392 0.5169 325 18.49744 0.2851 164 1208 13.57616 0.4127 42 359 11.69916 0.3998 0 1651 0.0000000 0.09479 1116 1757 63.51736 0.7591 720 3 0.4166667 0.2470 5 0.6944444 0.5106 9 573 1.5706806 0.46880 57 573 9.947644 0.7317 212 1757 12.066022 0.9549 2.45440 0.4888 1.70929 0.1025 0.7591 0.7527 2.91300 0.68620 7.83579 0.4802
01001020300 01 001 020300 AL Alabama Autauga County 3 South Region 6 East South Central Division 3694 1464 1351 842 3694 22.79372 0.5833 53 1994 2.657974 0.22050 117 967 12.099276 0.11370 147 384 38.28125 0.3856 264 1351 19.54108 0.1827 317 2477 12.797739 0.6460 127 3673 3.457664 0.2308 464 12.56091 0.3088 929 25.14889 0.7080 473 2744 17.23761 0.6211 263 975 26.97436 0.8234 128 3586 3.5694367 0.70770 1331 3694 36.03140 0.5515 1464 26 1.7759563 0.3675 14 0.9562842 0.5389 35 1351 2.5906736 0.60550 42 1351 3.108808 0.3415 0 3694 0.000000 0.1831 1.86330 0.3063 3.16900 0.8380 0.5515 0.5468 2.03650 0.26830 7.62030 0.4460
01001020400 01 001 020400 AL Alabama Autauga County 3 South Region 6 East South Central Division 3539 1741 1636 503 3539 14.21305 0.3472 39 1658 2.352232 0.17990 219 1290 16.976744 0.30880 74 346 21.38728 0.1037 293 1636 17.90954 0.1333 173 2775 6.234234 0.3351 169 3529 4.788892 0.3448 969 27.38062 0.9225 510 14.41085 0.1208 670 3019 22.19278 0.8194 148 1137 13.01671 0.4541 89 3409 2.6107363 0.64690 454 3539 12.82848 0.2364 1741 143 8.2136703 0.6028 0 0.0000000 0.2186 10 1636 0.6112469 0.28340 72 1636 4.400978 0.4538 0 3539 0.000000 0.1831 1.34030 0.1575 2.96370 0.7496 0.2364 0.2344 1.74170 0.16270 6.28210 0.2389
01001020500 01 001 020500 AL Alabama Autauga County 3 South Region 6 East South Central Division 10674 4504 4424 1626 10509 15.47245 0.3851 81 5048 1.604596 0.09431 321 2299 13.962592 0.17970 711 2125 33.45882 0.2836 1032 4424 23.32731 0.3109 531 6816 7.790493 0.4251 301 10046 2.996217 0.1894 1613 15.11149 0.4553 2765 25.90407 0.7494 1124 7281 15.43744 0.5253 342 2912 11.74451 0.4019 52 9920 0.5241935 0.35230 2603 10674 24.38636 0.4160 4504 703 15.6083481 0.7378 29 0.6438721 0.5037 37 4424 0.8363472 0.33420 207 4424 4.679023 0.4754 176 10674 1.648866 0.7598 1.40481 0.1743 2.48420 0.4802 0.4160 0.4125 2.81090 0.63730 7.11591 0.3654
01001020600 01 001 020600 AL Alabama Autauga County 3 South Region 6 East South Central Division 3536 1464 1330 1279 3523 36.30429 0.8215 34 1223 2.780049 0.23780 321 1111 28.892889 0.75870 67 219 30.59361 0.2305 388 1330 29.17293 0.5075 306 2380 12.857143 0.6480 415 3496 11.870709 0.7535 547 15.46946 0.4760 982 27.77149 0.8327 729 2514 28.99761 0.9488 95 880 10.79545 0.3601 0 3394 0.0000000 0.09479 985 3536 27.85633 0.4608 1464 0 0.0000000 0.1079 364 24.8633880 0.9300 0 1330 0.0000000 0.09796 17 1330 1.278196 0.1463 0 3536 0.000000 0.1831 2.96830 0.6434 2.71239 0.6156 0.4608 0.4569 1.46526 0.08976 7.60675 0.4440
svi_2020_national <- svi_theme_flags(svi_2020_national, .90)
svi_2020_national %>% arrange(desc(F_TOTAL)) %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt FIPS_st FIPS_county FIPS_tract state state_name county region_number region division_number division E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1 RPL_THEME1 F_THEME1 SPL_THEME2 RPL_THEME2 F_THEME2 SPL_THEME3 RPL_THEME3 F_THEME3 SPL_THEME4 RPL_THEME4 F_THEME4 SPL_THEMES RPL_THEMES F_TOTAL
48141000404 48 141 000404 TX Texas El Paso County 3 South Region 7 West South Central Division 3380 1648 1221 2390 3380 70.71006 0.9928 1 210 1268 16.56151 0.9697 1 12 154 7.792208 0.02796 0 705 1067 66.07310 0.9281 1 717 1221 58.72236 0.9772 1 745 1955 38.10742 0.9703 1 1234 3370 36.61721 0.9940 1 369 10.917160 0.22390 0 1070 31.65680 0.9356 1 664 2300 28.86957 0.9477 1 365 761 47.96321 0.9741 1 649 3025 21.45455 0.9659 1 3222 3380 95.32544 0.9478 1 1648 701 42.53641 0.9214 1 0 0 0.2186 0 130 1221 10.647011 0.9224 1 344 1221 28.17363 0.9344 1 0 3380 0.0000000 0.1831 0 4.9040 0.9886 5 4.04720 0.9848 4 0.9478 0.9398 1 3.1799 0.8000 3 13.07890 0.9859 13
06037224420 06 037 224420 CA California Los Angeles County 4 West Region 9 Pacific Division 2651 943 883 1562 2389 65.38301 0.9868 1 232 1430 16.22378 0.9672 1 13 57 22.807018 0.56500 0 584 826 70.70218 0.9614 1 597 883 67.61042 0.9949 1 894 1588 56.29723 0.9975 1 605 2651 22.82158 0.9514 1 243 9.166352 0.14720 0 543 20.48284 0.4073 0 211 1889 11.16993 0.2666 0 207 571 36.25219 0.9217 1 870 2539 34.26546 0.9937 1 2523 2651 95.17163 0.9465 1 943 540 57.26405 0.9549 1 0 0 0.2186 0 344 883 38.958097 0.9984 1 302 883 34.20159 0.9522 1 253 2651 9.5435685 0.9459 1 4.8978 0.9886 5 2.73650 0.6297 2 0.9465 0.9385 1 4.0700 0.9818 4 12.65080 0.9801 12
12086001401 12 086 001401 FL Florida Miami-Dade County 3 South Region 5 South Atlantic Division 6606 2427 2203 4080 6606 61.76203 0.9802 1 314 2673 11.74710 0.9138 1 134 300 44.666667 0.95870 1 1111 1903 58.38150 0.8314 0 1245 2203 56.51384 0.9682 1 1363 4012 33.97308 0.9551 1 1313 6606 19.87587 0.9252 1 732 11.080836 0.23160 0 1985 30.04844 0.9023 1 670 4621 14.49903 0.4697 0 606 1267 47.82952 0.9736 1 854 5756 14.83669 0.9273 1 6592 6606 99.78807 0.9954 1 2427 965 39.76102 0.9125 1 0 0 0.2186 0 378 2203 17.158420 0.9692 1 777 2203 35.27009 0.9546 1 40 6606 0.6055101 0.6241 0 4.7425 0.9867 5 3.50450 0.9317 3 0.9954 0.9870 1 3.6790 0.9403 3 12.92140 0.9845 12
27053005902 27 053 005902 MN Minnesota Hennepin County 2 Midwest Region 4 West North Central Division 3896 1173 1087 2343 3739 62.66381 0.9824 1 226 1842 12.26927 0.9232 1 21 71 29.577465 0.77560 0 521 1016 51.27953 0.6904 0 542 1087 49.86201 0.9223 1 719 1932 37.21532 0.9675 1 608 3896 15.60575 0.8581 0 87 2.233059 0.01142 0 1442 37.01232 0.9852 1 640 2440 26.22951 0.9114 1 274 583 46.99828 0.9714 1 444 3462 12.82496 0.9096 1 2911 3896 74.71766 0.8205 0 1173 721 61.46633 0.9616 1 0 0 0.2186 0 226 1087 20.791168 0.9809 1 323 1087 29.71481 0.9398 1 579 3896 14.8613963 0.9619 1 4.6535 0.9834 4 3.78902 0.9713 4 0.8205 0.8136 0 4.0628 0.9815 4 13.32582 0.9873 12
34001002400 34 001 002400 NJ New Jersey Atlantic County 1 Northeast Region 2 Middle Atlantic Division 2614 1726 1217 1579 2612 60.45176 0.9773 1 290 1171 24.76516 0.9931 1 69 127 54.330709 0.98500 1 538 1090 49.35780 0.6469 0 607 1217 49.87675 0.9224 1 697 1998 34.88488 0.9590 1 551 2614 21.07881 0.9374 1 516 19.739862 0.70560 0 503 19.24254 0.3280 0 576 2111 27.28565 0.9280 1 257 567 45.32628 0.9667 1 556 2368 23.47973 0.9732 1 2029 2614 77.62050 0.8359 0 1726 1166 67.55504 0.9693 1 0 0 0.2186 0 115 1217 9.449466 0.9062 1 673 1217 55.29992 0.9828 1 223 2614 8.5309870 0.9407 1 4.7892 0.9877 5 3.90150 0.9792 3 0.8359 0.8288 0 4.0176 0.9793 4 13.54420 0.9879 12
34039039300 34 039 039300 NJ New Jersey Union County 1 Northeast Region 2 Middle Atlantic Division 6145 1835 1727 3492 6096 57.28346 0.9684 1 350 3006 11.64338 0.9114 1 58 140 41.428571 0.94020 1 829 1587 52.23692 0.7127 0 887 1727 51.36074 0.9352 1 1367 3639 37.56527 0.9686 1 2771 6145 45.09357 0.9987 1 400 6.509357 0.06257 0 2006 32.64443 0.9503 1 443 4139 10.70307 0.2400 0 476 1178 40.40747 0.9470 1 1979 5714 34.63423 0.9941 1 5955 6145 96.90806 0.9624 1 1835 815 44.41417 0.9271 1 0 0 0.2186 0 391 1727 22.640417 0.9849 1 748 1727 43.31210 0.9692 1 114 6145 1.8551668 0.7766 0 4.7823 0.9877 5 3.19397 0.8468 3 0.9624 0.9543 1 3.8764 0.9680 3 12.81507 0.9830 12

Data Analysis Questions

From a data science project management standpoint, how do you believe that functions are most useful? Can you think of scenarios in your current work or previous data projects where it would have been helpful to implement functions? Can you think of scenarios where functions are not the most useful strategy for processing data?

I think R functions are most helpful by introducing iteration/repetition and reducing the amount of code needed in a project. I work as a research scientist in public health, and I can absolutely think of real projects, both past and present, where using functions would be helpful. Before I started my position as a research scientist, I worked in a different department as a lead for our Public Health Emergency Preparedness & Response and Regional Emergency & Disaster Healthcare Coalition programs. As part of our preparedness/planning efforts, I created SVI profiles for each county to understand how social vulnerability characteristics influenced vulnerability to specific hazards. I manipulated the data in Excel, but it would have been a million times better to combine functions and R’s reporting capabilities.

I think writing functions is more resource intensive than writing regular code, so I see it as an investment of time with an expectation of return. If it’s a task that needs to be done once and won’t be repeated, it undermines the purpose of a function. Similarly, writing a function for a small dataset won’t return the invested time.

Describe the CDC SVI index. What is it, and how do we intend to use it for our project?

The CDC’s Social Vulnerability Index calculates scores and rankings to identify areas more vulnerable to emergencies and disasters. It looks at four dimensions, or “themes”, including socioeconomic status, household characteristics, racial & ethnic minority status, and housing type & transportation. For the purpose of this course, we’ll use the SVI as the dependent variable to understand whether tax credit programs (as a policy/intervention) successfully improved community outcomes for vulnerable populations.

Nationally, what are the most & least vulnerable tracts by THEME1, THEME2, THEME3, THEME4, OVERALL for 2020 and 2010.

The tables with the most and least vulnerable tracts are listed below.

# Finish preparing the 2010 data using the steps above
svi_2010_national <- svi_theme_variables(svi_2010_national)
svi_2010_national <- svi_theme_flags(svi_2010_national, .90)

# Find the extremes for 2010
extremes_2010_nat <- svi_2010_national %>% 
  filter(!is.na(F_THEME1) & E_TOTPOP_10 > 100) %>% 
  mutate(min1 = GEOID_2010_trt[which.min(RPL_THEME1)],
         min2 = GEOID_2010_trt[which.min(RPL_THEME2)],
         min3 = GEOID_2010_trt[which.min(RPL_THEME3)],
         min4 = GEOID_2010_trt[which.min(RPL_THEME4)],
         minall = GEOID_2010_trt[which.min(RPL_THEMES)],
         max1 = GEOID_2010_trt[which.max(RPL_THEME1)],
         max2 = GEOID_2010_trt[which.max(RPL_THEME2)],
         max3 = GEOID_2010_trt[which.max(RPL_THEME3)],
         max4 = GEOID_2010_trt[which.max(RPL_THEME4)],
         maxall = GEOID_2010_trt[which.max(RPL_THEMES)]) %>% 
  select(min1:maxall) %>% 
  unique()

extremes_2010_nat %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
min1 min2 min3 min4 minall max1 max2 max3 max4 maxall
06073011300 06073009901 01003011408 01073005909 19169001200 06065042505 55025001102 01073000700 04013093104 55025001102
# Find the extremes for 2020
extremes_2020_nat <- svi_2020_national %>% 
  filter(!is.na(F_THEME1) & E_TOTPOP_20 > 100) %>% 
  mutate(min1 = GEOID_2010_trt[which.min(RPL_THEME1)],
         min2 = GEOID_2010_trt[which.min(RPL_THEME2)],
         min3 = GEOID_2010_trt[which.min(RPL_THEME3)],
         min4 = GEOID_2010_trt[which.min(RPL_THEME4)],
         minall = GEOID_2010_trt[which.min(RPL_THEMES)],
         max1 = GEOID_2010_trt[which.max(RPL_THEME1)],
         max2 = GEOID_2010_trt[which.max(RPL_THEME2)],
         max3 = GEOID_2010_trt[which.max(RPL_THEME3)],
         max4 = GEOID_2010_trt[which.max(RPL_THEME4)],
         maxall = GEOID_2010_trt[which.max(RPL_THEMES)]) %>% 
  select(min1:maxall) %>% 
  unique()

extremes_2020_nat %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
min1 min2 min3 min4 minall max1 max2 max3 max4 maxall
06073009901 20091980002 01077011602 01101005608 45019004613 12099008001 48303000605 04001942600 04013093104 48303000605

For your division, what are the most & least vulnerable tracts by THEME1, THEME2, THEME3, THEME4, OVERALL. Do they belong to certain divisions/states?

In 2010, tracts in three California counties had the highest SVI including one in Los Angeles (RPL_THEME1), Fresno (RPL_THEME3), and Contra Costa (RPL_THEME4). The same tract in Clackamas County, Oregon had the highest SVI score for RPL_THEME2 and the overall SVI. Two tracts in San Diego, California scored lowest for RPL_THEME1 and RPL_THEME2. Tracts in two Alaska areas had the lowest SVI including one in the Prince of Wales-Hyder Census Area (RPL_THEME3) and Anchorage Municipality (RPL_THEME4). A tract in Honolulu County, Hawaii scored the lowest overall SVI.

In 2020, California took over all five scores as the highest score. Tracts that ranked highest were located in:

  1. Los Angeles County (RPL_THEME1)
  2. Imperial County (RPL_THEME2)
  3. Los Angeles County (RPL_THEME3) - different tract than RPL_THEME1
  4. Fresno County (RPL_THEME4)
  5. Imperial County (RPL_THEMES) - same tract as RPL_THEME2

A tract in Pierce County, Washington tied with a tract from San Diego County, California for the lowest SVI score for RPL_THEME1. The same tract in Pierce County scored lowest for RPL_THEME2 too. Tracts in Sacramento County, Alameda County, and San Diego County, California had the lowest SVIs for RPL_THEME3, RPL_THEME4, and RPL_THEMES respectively.

# Prepare the data
svi_2010_divisional <- svi_theme_variables(svi_2010_divisional)
svi_2010_divisional <- svi_theme_flags(svi_2010_divisional, .90)

svi_2020_divisional <- svi_theme_variables(svi_2020_divisional)
svi_2020_divisional <- svi_theme_flags(svi_2020_divisional, .90)

# Find the extremes
extremes_2010_div <- svi_2010_divisional %>% 
  filter(!is.na(F_THEME1) & E_TOTPOP_10 > 100) %>% 
  mutate(min1 = GEOID_2010_trt[which.min(RPL_THEME1)],
         min2 = GEOID_2010_trt[which.min(RPL_THEME2)],
         min3 = GEOID_2010_trt[which.min(RPL_THEME3)],
         min4 = GEOID_2010_trt[which.min(RPL_THEME4)],
         minall = GEOID_2010_trt[which.min(RPL_THEMES)],
         max1 = GEOID_2010_trt[which.max(RPL_THEME1)],
         max2 = GEOID_2010_trt[which.max(RPL_THEME2)],
         max3 = GEOID_2010_trt[which.max(RPL_THEME3)],
         max4 = GEOID_2010_trt[which.max(RPL_THEME4)],
         maxall = GEOID_2010_trt[which.max(RPL_THEMES)]) %>% 
  select(min1:maxall) %>% 
  unique()
print(extremes_2010_div)
## # A tibble: 1 × 10
##   min1        min2        min3       min4  minall max1  max2  max3  max4  maxall
##   <chr>       <chr>       <chr>      <chr> <chr>  <chr> <chr> <chr> <chr> <chr> 
## 1 06073011300 06073009901 021980003… 0202… 15003… 0603… 4100… 0601… 0601… 41005…
extremes_2020_div <- svi_2020_divisional %>% 
  filter(!is.na(F_THEME1) & E_TOTPOP_20 > 100) %>% 
  mutate(min1 = GEOID_2010_trt[which.min(RPL_THEME1)],
         min2 = GEOID_2010_trt[which.min(RPL_THEME2)],
         min3 = GEOID_2010_trt[which.min(RPL_THEME3)],
         min4 = GEOID_2010_trt[which.min(RPL_THEME4)],
         minall = GEOID_2010_trt[which.min(RPL_THEMES)],
         max1 = GEOID_2010_trt[which.max(RPL_THEME1)],
         max2 = GEOID_2010_trt[which.max(RPL_THEME2)],
         max3 = GEOID_2010_trt[which.max(RPL_THEME3)],
         max4 = GEOID_2010_trt[which.max(RPL_THEME4)],
         maxall = GEOID_2010_trt[which.max(RPL_THEMES)]) %>% 
  select(min1:maxall) %>% 
  unique()

print(extremes_2020_div)
## # A tibble: 1 × 10
##   min1        min2        min3       min4  minall max1  max2  max3  max4  maxall
##   <chr>       <chr>       <chr>      <chr> <chr>  <chr> <chr> <chr> <chr> <chr> 
## 1 06073009901 53053072906 060670071… 0600… 06073… 0603… 0602… 0603… 0601… 06025…
# If we want to go back and find these tracts in their entirety:
extremes_table_2010_div <- svi_2010_divisional %>% 
  filter(GEOID_2010_trt %in% as.character(extremes_2010_div)) %>% 
  select(GEOID_2010_trt, state_name, county, matches("^RPL_"))

extremes_table_2010_div %>% arrange(state_name, county) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt state_name county RPL_THEME1 RPL_THEME2 RPL_THEME3 RPL_THEME4 RPL_THEMES
02020002813 Alaska Anchorage Municipality 0.008282 0.0216300 0.0984600 0.002807 0.0005521
02198000300 Alaska Prince of Wales-Hyder Census Area 0.057700 0.1648000 0.0005981 0.085760 0.0348800
06013369001 California Contra Costa County 0.925500 0.9830000 0.7821000 0.987200 0.9859000
06019007801 California Fresno County 0.924200 0.7206000 0.9858000 0.932100 0.9344000
06037224310 California Los Angeles County 0.986700 0.6316000 0.9038000 0.979500 0.9748000
06073009901 California San Diego County 0.013710 0.0001840 0.4239000 0.082820 0.0004601
06073011300 California San Diego County 0.000092 0.0003681 0.4937000 0.083460 0.0002761
15003008611 Hawaii Honolulu County 0.000184 0.0016560 0.5820000 0.002807 0.0000920
41005980000 Oregon Clackamas County 0.634000 0.9978000 0.4090000 0.839200 0.9978000
extremes_table_2020_div <- svi_2020_divisional %>% 
  filter(GEOID_2010_trt %in% as.character(extremes_2020_div)) %>% 
  select(GEOID_2010_trt, state_name, county, matches("^RPL_"))

extremes_table_2020_div %>% arrange(state_name, county) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt state_name county RPL_THEME1 RPL_THEME2 RPL_THEME3 RPL_THEME4 RPL_THEMES
06001451505 California Alameda County 0.0251200 0.0811600 0.2719000 0.0009202 0.001288
06019000800 California Fresno County 0.9309000 0.9873000 0.6902000 0.9876000 0.986900
06025010101 California Imperial County 0.8727000 0.9880000 0.8769000 0.7500000 0.987800
06037224420 California Los Angeles County 0.9875000 0.7086000 0.9155000 0.9802000 0.982000
06037540800 California Los Angeles County 0.6542000 0.6373000 0.9912000 0.3516000 0.639200
06067007101 California Sacramento County 0.0167500 0.0588900 0.0004141 0.1799000 0.016470
06073009901 California San Diego County 0.0002761 0.0003681 0.3860000 0.0831000 0.000092
53053072906 Washington Pierce County 0.0002761 0.0001840 0.5246000 0.8216000 0.020800

For the most vulnerable state in your division, what are the most & least vulnerable tracts by THEME1, THEME2, THEME3, THEME4, OVERALL? Do they belong to certain counties?

The most vulnerable state in the Pacific Division is California. In 2010, two tracts in San Diego had the lowest SVI score in RPL_THEME1, RPL_THEME2, and RPL_THEMES. In 2020, one tract dropped off, but the remaining tract maintained the lowest SVI in the same three areas. Los Angeles, Alameda, Fresno, and San Diego counties appeared in the results for both 2010 and 2020.

# Find which states have highest overall SVI
aggregate(svi_2010_divisional$RPL_THEMES, by=list(svi_2010_divisional$state_name), FUN=mean)
##      Group.1         x
## 1     Alaska 0.4298082
## 2 California 0.5326944
## 3     Hawaii 0.4561219
## 4     Oregon 0.4301651
## 5 Washington 0.3782204
aggregate(svi_2020_divisional$RPL_THEMES, by=list(svi_2020_divisional$state_name), FUN=mean)
##      Group.1         x
## 1     Alaska 0.4920315
## 2 California 0.5287623
## 3     Hawaii 0.4893055
## 4     Oregon 0.4305941
## 5 Washington 0.3845878
# Isolate California
svi_2010_CA <- svi_2010_divisional %>% 
  filter(state == "CA")

svi_2020_CA <- svi_2020_divisional %>% 
  filter(state == "CA")

# Find the extremes

extremes_2010_CA <- svi_2010_CA %>% 
  filter(!is.na(F_THEME1) & E_TOTPOP_10 > 100) %>% 
  mutate(min1 = GEOID_2010_trt[which.min(RPL_THEME1)],
         min2 = GEOID_2010_trt[which.min(RPL_THEME2)],
         min3 = GEOID_2010_trt[which.min(RPL_THEME3)],
         min4 = GEOID_2010_trt[which.min(RPL_THEME4)],
         minall = GEOID_2010_trt[which.min(RPL_THEMES)],
         max1 = GEOID_2010_trt[which.max(RPL_THEME1)],
         max2 = GEOID_2010_trt[which.max(RPL_THEME2)],
         max3 = GEOID_2010_trt[which.max(RPL_THEME3)],
         max4 = GEOID_2010_trt[which.max(RPL_THEME4)],
         maxall = GEOID_2010_trt[which.max(RPL_THEMES)]) %>% 
  select(min1:maxall) %>% 
  unique()
print(extremes_2010_CA)
## # A tibble: 1 × 10
##   min1        min2        min3       min4  minall max1  max2  max3  max4  maxall
##   <chr>       <chr>       <chr>      <chr> <chr>  <chr> <chr> <chr> <chr> <chr> 
## 1 06073011300 06073009901 060379200… 0600… 06073… 0603… 0605… 0601… 0601… 06055…
extremes_2020_CA <- svi_2020_CA %>% 
  filter(!is.na(F_THEME1) & E_TOTPOP_20 > 100) %>% 
  mutate(min1 = GEOID_2010_trt[which.min(RPL_THEME1)],
         min2 = GEOID_2010_trt[which.min(RPL_THEME2)],
         min3 = GEOID_2010_trt[which.min(RPL_THEME3)],
         min4 = GEOID_2010_trt[which.min(RPL_THEME4)],
         minall = GEOID_2010_trt[which.min(RPL_THEMES)],
         max1 = GEOID_2010_trt[which.max(RPL_THEME1)],
         max2 = GEOID_2010_trt[which.max(RPL_THEME2)],
         max3 = GEOID_2010_trt[which.max(RPL_THEME3)],
         max4 = GEOID_2010_trt[which.max(RPL_THEME4)],
         maxall = GEOID_2010_trt[which.max(RPL_THEMES)]) %>% 
  select(min1:maxall) %>% 
  unique()
print(extremes_2020_CA)
## # A tibble: 1 × 10
##   min1        min2        min3       min4  minall max1  max2  max3  max4  maxall
##   <chr>       <chr>       <chr>      <chr> <chr>  <chr> <chr> <chr> <chr> <chr> 
## 1 06073009901 06073009901 060670071… 0600… 06073… 0603… 0602… 0603… 0601… 06025…
# If we want to go back and find these tracts in their entirety:
extremes_table_2010_CA <- svi_2010_divisional %>% 
  filter(GEOID_2010_trt %in% as.character(extremes_2010_CA)) %>% 
  select(GEOID_2010_trt, county, matches("^RPL_"))

extremes_table_2010_CA %>% arrange(county) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt county RPL_THEME1 RPL_THEME2 RPL_THEME3 RPL_THEME4 RPL_THEMES
06001443200 Alameda County 0.126600 0.0877900 0.730400 0.002807 0.0461900
06013369001 Contra Costa County 0.925500 0.9830000 0.782100 0.987200 0.9859000
06019007801 Fresno County 0.924200 0.7206000 0.985800 0.932100 0.9344000
06037224310 Los Angeles County 0.986700 0.6316000 0.903800 0.979500 0.9748000
06037920026 Los Angeles County 0.320400 0.0808000 0.001288 0.082540 0.0965300
06055200900 Napa County 0.829300 0.9913000 0.460000 0.083740 0.9913000
06073009901 San Diego County 0.013710 0.0001840 0.423900 0.082820 0.0004601
06073011300 San Diego County 0.000092 0.0003681 0.493700 0.083460 0.0002761
extremes_table_2020_CA <- svi_2020_divisional %>% 
  filter(GEOID_2010_trt %in% as.character(extremes_2020_CA)) %>% 
  select(GEOID_2010_trt, county, matches("^RPL_"))

extremes_table_2020_CA %>% arrange(county) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt county RPL_THEME1 RPL_THEME2 RPL_THEME3 RPL_THEME4 RPL_THEMES
06001451505 Alameda County 0.0251200 0.0811600 0.2719000 0.0009202 0.001288
06019000800 Fresno County 0.9309000 0.9873000 0.6902000 0.9876000 0.986900
06025010101 Imperial County 0.8727000 0.9880000 0.8769000 0.7500000 0.987800
06037224420 Los Angeles County 0.9875000 0.7086000 0.9155000 0.9802000 0.982000
06037540800 Los Angeles County 0.6542000 0.6373000 0.9912000 0.3516000 0.639200
06067007101 Sacramento County 0.0167500 0.0588900 0.0004141 0.1799000 0.016470
06073009901 San Diego County 0.0002761 0.0003681 0.3860000 0.0831000 0.000092