Visualizing the Intervention
Library
# Turn off scientific notation
options(scipen=999)
Functions
# Load packages
library(here) # relative file paths for reproducibility
library(tidyverse) # data wrangling
library(stringi) # string data wrangling
library(tigris) # US census TIGER/Line shapefiles
library(ggplot2) # data visualization
library(cowplot) # data visualization plotting
library(gridExtra) # grid for data visualizations
library(biscale) # bivariate mapping
library(kableExtra) # table formatting
library(scales) # palette and number formatting
library(cluster) # clustering algorithms
library(factoextra) # clustering algorithms & visualization
library(moments) # skewness and kurtosis testing
import::here( "fips_census_regions",
"load_svi_data",
"merge_svi_data",
"census_division",
"flag_summarize",
"summarize_county_nmtc",
"summarize_county_lihtc",
"elbow_plot",
# notice the use of here::here() that points to the .R file
# where all these R objects are created
.from = here::here("analysis/project_data_steps_Jazzy.R"),
.character_only = TRUE)
census_division
## [1] "Pacific Division"
Data
Load Data
# Load SVI data sets
svi_2010 <- readRDS(here::here("data/raw/Census_Data_SVI/svi_2010_trt10.rds"))
svi_2020 <- readRDS(here::here("data/raw/Census_Data_SVI/svi_2020_trt10.rds"))
# Load mapping data sets
svi_county_map2010 <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_county_svi_flags10.rds")))
svi_county_map2020 <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_county_svi_flags20.rds")))
divisional_st_sf <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_st_sf.rds")))
# Load NMTC & LIHTC Tract Eligibility Data
orig_nmtc <- readxl::read_excel(here::here("data/raw/NMTC_LIHTC_tracts/nmtc_2011-2015_lic_110217.xlsx"), sheet="NMTC LICs 2011-2015 ACS")
high_migration_nmtc <- readxl::read_excel(here::here("data/raw/NMTC_LIHTC_tracts/nmtc_2011-2015_lic_110217.xlsx"), sheet="High migration tracts", skip=1)
nmtc_awards_data <- readxl::read_excel(here::here("data/raw/NMTC_LIHTC_tracts/NMTC_Public_Data_Release_includes_FY_2021_Data_final.xlsx"), sheet = "Projects 2 - Data Set PUBLISH.P")
lihtc_eligible <- readxl::read_excel(here::here("data/raw/NMTC_LIHTC_tracts/qct_data_2010_2011_2012.xlsx"))
lihtc_projects <- read.csv(here::here("data/raw/NMTC_LIHTC_tracts/lihtcpub/LIHTCPUB.csv"))
# National 2010 Data
svi_2010_national <- load_svi_data(svi_2010, percentile=.75)
svi_2010_national %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
# Divisional 2010 Data
svi_2010_divisional <- load_svi_data(svi_2010, rank_by = "divisional", location = census_division, percentile=.75)
svi_2010_divisional %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
# National 2020 Data
svi_2020_national <- load_svi_data(svi_2020, percentile=.75)
svi_2020_national %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
# Divisional 2020 Data
svi_2020_divisional <- load_svi_data(svi_2020, rank_by = "divisional", location = census_division, percentile=.75)
svi_2020_divisional %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
Merge 2010 and 2020 Data
# Find tracts with divisional data in both 2010 and 2020
svi_divisional <- merge_svi_data(svi_2010_divisional, svi_2020_divisional)
svi_divisional %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
# Find tracts with divisional data in both 2010 and 2020
svi_national <- merge_svi_data(svi_2010_national, svi_2020_national)
svi_national %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
NMTC Data Wrangling
orig_nmtc_df <- orig_nmtc %>%
rename("GEOID10" = "2010 Census Tract Number FIPS code. GEOID",
"nmtc_eligibility_orig" = "Does Census Tract Qualify For NMTC Low-Income Community (LIC) on Poverty or Income Criteria?")
orig_nmtc_df %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID10 | OMB Metro/Non-metro Designation, July 2015 (OMB 15-01) | nmtc_eligibility_orig | Census Tract Poverty Rate % (2011-2015 ACS) | Does Census Tract Qualify on Poverty Criteria\>=20%? | Census Tract Percent of Benchmarked Median Family Income (%) 2011-2015 ACS | Does Census Tract Qualify on Median Family Income Criteria\<=80%? | Census Tract Unemployment Rate (%) 2011-2015 | County Code | State Abbreviation | State Name | County Name | Census Tract Unemployment to National Unemployment Ratio | Is Tract Unemployment to National Unemployment Ratio \>1.5? | Population for whom poverty status is determined 2011-2015 ACS |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 01001020100 | Metropolitan | No | 8.1 | No | 122.930646878856 | No | 5.4 | 01001 | AL | Alabama | Autauga | 0.6506024096385542 | No | 1948 |
| 01001020200 | Metropolitan | Yes | 25.5 | Yes | 82.402258244451573 | No | 13.3 | 01001 | AL | Alabama | Autauga | 1.6024096385542168 | Yes | 1983 |
| 01001020300 | Metropolitan | No | 12.7 | No | 94.261422220719723 | No | 6.2 | 01001 | AL | Alabama | Autauga | 0.74698795180722888 | No | 2968 |
| 01001020400 | Metropolitan | No | 2.1 | No | 116.82358310373388 | No | 10.8 | 01001 | AL | Alabama | Autauga | 1.3012048192771084 | No | 4423 |
| 01001020500 | Metropolitan | No | 11.4 | No | 127.74293876033198 | No | 4.2 | 01001 | AL | Alabama | Autauga | 0.50602409638554213 | No | 10563 |
| 01001020600 | Metropolitan | No | 14.4 | No | 111.98255607579317 | No | 10.9 | 01001 | AL | Alabama | Autauga | 1.3132530120481927 | No | 3851 |
high_migration_nmtc_df <- high_migration_nmtc %>% rename("GEOID10" = "2010 Census Tract Number FIPS code GEOID")
high_migration_nmtc_df %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID10 | 20-year County population loss 1990-2010 census | % Median Family Income (MFI) / Area Income 2011-2015 (between 80%-85% MFI) |
|---|---|---|
| 01087231601 | -0.1394416 | 82.06754 |
| 05039970300 | -0.1558144 | 84.78236 |
| 08017960600 | -0.2340426 | 84.36239 |
| 17067953800 | -0.1061620 | 80.36788 |
| 17067954200 | -0.1061620 | 84.48551 |
| 17067954300 | -0.1061620 | 84.44497 |
# See original doesn't have high migration tracts coded as eligible
orig_nmtc_df %>% filter(GEOID10 == "01087231601") %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID10 | OMB Metro/Non-metro Designation, July 2015 (OMB 15-01) | nmtc_eligibility_orig | Census Tract Poverty Rate % (2011-2015 ACS) | Does Census Tract Qualify on Poverty Criteria\>=20%? | Census Tract Percent of Benchmarked Median Family Income (%) 2011-2015 ACS | Does Census Tract Qualify on Median Family Income Criteria\<=80%? | Census Tract Unemployment Rate (%) 2011-2015 | County Code | State Abbreviation | State Name | County Name | Census Tract Unemployment to National Unemployment Ratio | Is Tract Unemployment to National Unemployment Ratio \>1.5? | Population for whom poverty status is determined 2011-2015 ACS |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 01087231601 | Non-Metropolitan | No | 16.2 | No | 82.067544858242542 | No | 11.3 | 01087 | AL | Alabama | Macon | 1.3614457831325302 | No | 888 |
# Add column to label tracts as high migration
high_migration_nmtc_df <- high_migration_nmtc_df %>% mutate(high_migration = "Yes")
# Join to original column
orig_nmtc_df <- left_join(orig_nmtc_df, high_migration_nmtc_df, join_by(GEOID10 == GEOID10))
# Update eligibility column with coalesce()
nmtc_df <- orig_nmtc_df %>%
mutate(nmtc_eligibility = coalesce(high_migration, nmtc_eligibility_orig))
nmtc_df %>% filter(GEOID10 == "01087231601") %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID10 | OMB Metro/Non-metro Designation, July 2015 (OMB 15-01) | nmtc_eligibility_orig | Census Tract Poverty Rate % (2011-2015 ACS) | Does Census Tract Qualify on Poverty Criteria\>=20%? | Census Tract Percent of Benchmarked Median Family Income (%) 2011-2015 ACS | Does Census Tract Qualify on Median Family Income Criteria\<=80%? | Census Tract Unemployment Rate (%) 2011-2015 | County Code | State Abbreviation | State Name | County Name | Census Tract Unemployment to National Unemployment Ratio | Is Tract Unemployment to National Unemployment Ratio \>1.5? | Population for whom poverty status is determined 2011-2015 ACS | 20-year County population loss 1990-2010 census | % Median Family Income (MFI) / Area Income 2011-2015 (between 80%-85% MFI) | high_migration | nmtc_eligibility |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 01087231601 | Non-Metropolitan | No | 16.2 | No | 82.067544858242542 | No | 11.3 | 01087 | AL | Alabama | Macon | 1.3614457831325302 | No | 888 | -0.1394416 | 82.06754 | Yes | Yes |
nmtc_eligible <- nmtc_df %>%
select(GEOID10, nmtc_eligibility, `County Code`, `County Name`, `State Abbreviation`, `State Name`) %>%
filter(tolower(nmtc_eligibility) == "yes")
nmtc_eligible %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID10 | nmtc_eligibility | County Code | County Name | State Abbreviation | State Name |
|---|---|---|---|---|---|
| 01001020200 | Yes | 01001 | Autauga | AL | Alabama |
| 01001020700 | Yes | 01001 | Autauga | AL | Alabama |
| 01001021100 | Yes | 01001 | Autauga | AL | Alabama |
| 01003010200 | Yes | 01003 | Baldwin | AL | Alabama |
| 01003010500 | Yes | 01003 | Baldwin | AL | Alabama |
| 01003010600 | Yes | 01003 | Baldwin | AL | Alabama |
# Save just tract ID and eligibility
nmtc_eligible_df <- nmtc_eligible %>% select(GEOID10, nmtc_eligibility)
nmtc_eligible_df %>% head()
## # A tibble: 6 × 2
## GEOID10 nmtc_eligibility
## <chr> <chr>
## 1 01001020200 Yes
## 2 01001020700 Yes
## 3 01001021100 Yes
## 4 01003010200 Yes
## 5 01003010500 Yes
## 6 01003010600 Yes
nmtc_awards <- nmtc_awards_data %>%
mutate(`2010 Census Tract` = str_pad(`2010 Census Tract`, 11, "left", pad=0)) %>%
rename("GEOID10" =`2010 Census Tract`)
nmtc_awards %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| Project ID | GEOID10 | Metro/Non-Metro, 2010 Census | Origination Year | Community Development Entity (CDE) Name | Project QLICI Amount | Estimated Total Project Cost | City | State | Zip Code | QALICB Type | Multi-CDE | Multi-Tract Project |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AK0001 | 02070000100 | Non-Metropolitan | 2008 | Alaska Growth Capital BIDCO, Inc. | 300000 | 300000 | Aleknagik | Alaska | 99555 | NRE | NO | NO |
| AK0002 | 02020001000 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 1008750 | 1345000 | Anchorage | Alaska | 99501 | NRE | NO | NO |
| AK0003 | 02020000600 | Metropolitan | 2006 | HEDC New Markets, Inc | 5061506 | 8694457 | Anchorage | Alaska | 99508 | NRE | NO | NO |
| AK0004 | 02020001000 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 187500 | 250000 | Anchorage | Alaska | 99501 | NRE | NO | NO |
| AK0006 | 02020001802 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 750000 | 1180000 | Anchorage | Alaska | 99507 | NRE | NO | NO |
| AK0007 | 02020001900 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 127500 | 150000 | Anchorage | Alaska | 99503 | NRE | NO | NO |
# Create character zip_code column:
nmtc_awards <- nmtc_awards %>%
mutate(zip_code = str_pad(`Zip Code`, 5, "left", pad=0))
nmtc_awards %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| Project ID | GEOID10 | Metro/Non-Metro, 2010 Census | Origination Year | Community Development Entity (CDE) Name | Project QLICI Amount | Estimated Total Project Cost | City | State | Zip Code | QALICB Type | Multi-CDE | Multi-Tract Project | zip_code |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AK0001 | 02070000100 | Non-Metropolitan | 2008 | Alaska Growth Capital BIDCO, Inc. | 300000 | 300000 | Aleknagik | Alaska | 99555 | NRE | NO | NO | 99555 |
| AK0002 | 02020001000 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 1008750 | 1345000 | Anchorage | Alaska | 99501 | NRE | NO | NO | 99501 |
| AK0003 | 02020000600 | Metropolitan | 2006 | HEDC New Markets, Inc | 5061506 | 8694457 | Anchorage | Alaska | 99508 | NRE | NO | NO | 99508 |
| AK0004 | 02020001000 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 187500 | 250000 | Anchorage | Alaska | 99501 | NRE | NO | NO | 99501 |
| AK0006 | 02020001802 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 750000 | 1180000 | Anchorage | Alaska | 99507 | NRE | NO | NO | 99507 |
| AK0007 | 02020001900 | Metropolitan | 2006 | Alaska Growth Capital BIDCO, Inc. | 127500 | 150000 | Anchorage | Alaska | 99503 | NRE | NO | NO | 99503 |
# View tracts
nmtc_awards_pre2010 <- nmtc_awards %>%
filter(`Origination Year` <= 2010) %>%
count(GEOID10) %>%
rename("pre10_nmtc_project_cnt" = "n")
nmtc_awards_dollars_pre2010 <- nmtc_awards %>%
filter(`Origination Year` <= 2010) %>%
group_by(GEOID10) %>%
summarise(pre10_nmtc_dollars = sum(`Project QLICI Amount`, na.rm = TRUE))
nmtc_awards_pre2010 <- left_join(nmtc_awards_pre2010,
nmtc_awards_dollars_pre2010,
join_by(GEOID10 == GEOID10))
nmtc_awards_pre2010$pre10_nmtc_dollars_formatted <- scales::dollar_format()(nmtc_awards_pre2010$pre10_nmtc_dollars)
nmtc_awards_pre2010 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID10 | pre10_nmtc_project_cnt | pre10_nmtc_dollars | pre10_nmtc_dollars_formatted |
|---|---|---|---|
| 01059973500 | 1 | 5000000 | \$5,000,000 |
| 01069041400 | 1 | 2500000 | \$2,500,000 |
| 01073001902 | 1 | 14400000 | \$14,400,000 |
| 01073002700 | 1 | 1000000 | \$1,000,000 |
| 01073004200 | 1 | 5908129 | \$5,908,129 |
| 01073004500 | 3 | 37950000 | \$37,950,000 |
nmtc_awards_post2010 <- nmtc_awards %>%
filter(`Origination Year` > 2010 & `Origination Year` <= 2020) %>%
count(GEOID10) %>%
rename("post10_nmtc_project_cnt" = "n")
nmtc_awards_dollars_post2010 <- nmtc_awards %>%
filter(`Origination Year` > 2010 & `Origination Year` <= 2020) %>%
group_by(GEOID10) %>%
summarise(post10_nmtc_dollars = sum(`Project QLICI Amount`, na.rm = TRUE))
nmtc_awards_post2010 <- left_join(nmtc_awards_post2010,
nmtc_awards_dollars_post2010,
join_by(GEOID10 == GEOID10))
nmtc_awards_post2010$post10_nmtc_dollars_formatted <- scales::dollar_format()(nmtc_awards_post2010$post10_nmtc_dollars)
nmtc_awards_post2010 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID10 | post10_nmtc_project_cnt | post10_nmtc_dollars | post10_nmtc_dollars_formatted |
|---|---|---|---|
| 0. | 3 | 24200000 | \$24,200,000 |
| 01003010200 | 1 | 408000 | \$408,000 |
| 01003010300 | 1 | 9880000 | \$9,880,000 |
| 01003010600 | 1 | 8000000 | \$8,000,000 |
| 01003010904 | 1 | 22460000 | \$22,460,000 |
| 01003011501 | 6 | 37147460 | \$37,147,460 |
# Divisional data
svi_divisional_nmtc_eligible <- left_join(svi_divisional, nmtc_eligible_df, join_by("GEOID_2010_trt" == "GEOID10")) %>% filter(tolower(nmtc_eligibility) == "yes")
svi_divisional_nmtc_eligible %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | nmtc_eligibility |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 02013000100 | 02 | 013 | 000100 | AK | Alaska | Aleutians East Borough | 4 | West Region | 9 | Pacific Division | 3703 | 474 | 267 | 1212 | 3695 | 32.80108 | 0.7570 | 1 | 111 | 3163 | 3.509327 | 0.08691 | 0 | 25 | 158 | 15.82278 | 0.01337 | 0 | 17 | 109 | 15.59633 | 0.02605 | 0 | 42 | 267 | 15.73034 | 0.004754 | 0 | 1082 | 3017 | 35.863441 | 0.85420 | 1 | 2060 | 3112 | 66.195373 | 0.99990 | 1 | 127 | 3.429652 | 0.042400 | 0 | 315 | 8.506616 | 0.03961 | 0 | 182 | 2849 | 6.388206 | 0.077750 | 0 | 50 | 165 | 30.30303 | 0.8835 | 1 | 1070 | 3617 | 29.5825270 | 0.93700 | 1 | 3492 | 3703 | 94.30192 | 0.9141 | 1 | 474 | 8 | 1.687764 | 0.29250 | 0 | 42 | 8.8607595 | 0.8128 | 1 | 7 | 267 | 2.6217228 | 0.4003 | 0 | 77 | 267 | 28.8389513 | 0.96850 | 1 | 2969 | 3703 | 80.1782339 | 0.9940 | 1 | 2.702764 | 0.5611 | 3 | 1.980260 | 0.23800 | 2 | 0.9141 | 0.9047 | 1 | 3.46810 | 0.8902 | 3 | 9.065224 | 0.6397 | 9 | 3389 | 1199 | 988 | 698 | 3379 | 20.65700 | 0.5925 | 0 | 86 | 2414 | 3.562552 | 0.2665 | 0 | 67 | 607 | 11.037891 | 0.01803 | 0 | 74 | 381 | 19.42257 | 0.04067 | 0 | 141 | 988 | 14.27126 | 0.006988 | 0 | 354 | 2646 | 13.378685 | 0.61070 | 0 | 1345 | 3384 | 39.745863 | 0.99970 | 1 | 381 | 11.2422544 | 0.31390 | 0 | 443 | 13.07170 | 0.0988 | 0 | 339 | 2941.000 | 11.526692 | 0.386000 | 0 | 135 | 593.00 | 22.765599 | 0.7920 | 1 | 334 | 3276 | 10.1953602 | 0.72620 | 0 | 2939 | 3389.000 | 86.72175 | 0.8110 | 1 | 1199 | 38 | 3.169308 | 0.3474 | 0 | 69 | 5.754796 | 0.7806 | 1 | 30 | 988 | 3.0364372 | 0.36010 | 0 | 220 | 988.000 | 22.267207 | 0.9527 | 1 | 1035 | 3389 | 30.539982 | 0.9843 | 1 | 2.476388 | 0.4947 | 1 | 2.316900 | 0.37850 | 1 | 0.8110 | 0.8038 | 1 | 3.42510 | 0.8683 | 3 | 9.029388 | 0.6419 | 6 | Yes |
| 02016000100 | 02 | 016 | 000100 | AK | Alaska | Aleutians West Census Area | 4 | West Region | 9 | Pacific Division | 1774 | 1056 | 166 | 328 | 1231 | 26.64500 | 0.6553 | 0 | 15 | 1370 | 1.094890 | 0.01369 | 0 | 25 | 95 | 26.31579 | 0.09653 | 0 | 16 | 71 | 22.53521 | 0.05099 | 0 | 41 | 166 | 24.69880 | 0.029080 | 0 | 207 | 1330 | 15.563910 | 0.58390 | 0 | 484 | 973 | 49.743063 | 0.99520 | 1 | 53 | 2.987599 | 0.031800 | 0 | 182 | 10.259301 | 0.05188 | 0 | 147 | 747 | 19.678715 | 0.864200 | 1 | 19 | 96 | 19.79167 | 0.6606 | 0 | 79 | 1718 | 4.5983702 | 0.46890 | 0 | 1154 | 1774 | 65.05073 | 0.6522 | 0 | 1056 | 22 | 2.083333 | 0.31610 | 0 | 0 | 0.0000000 | 0.2497 | 0 | 10 | 166 | 6.0240964 | 0.6154 | 0 | 84 | 166 | 50.6024096 | 0.99320 | 1 | 1324 | 1774 | 74.6335964 | 0.9935 | 1 | 2.277170 | 0.4443 | 1 | 2.077380 | 0.27780 | 1 | 0.6522 | 0.6454 | 0 | 3.16790 | 0.7874 | 2 | 8.174650 | 0.5311 | 4 | 950 | 694 | 199 | 218 | 719 | 30.31989 | 0.7848 | 1 | 15 | 560 | 2.678571 | 0.1560 | 0 | 11 | 117 | 9.401709 | 0.01305 | 0 | 14 | 82 | 17.07317 | 0.03088 | 0 | 25 | 199 | 12.56281 | 0.003541 | 0 | 48 | 681 | 7.048458 | 0.37250 | 0 | 238 | 721 | 33.009709 | 0.99890 | 1 | 116 | 12.2105263 | 0.37310 | 0 | 195 | 20.52632 | 0.4153 | 0 | 113 | 526.000 | 21.482890 | 0.893100 | 1 | 31 | 98.00 | 31.632653 | 0.9318 | 1 | 17 | 900 | 1.8888889 | 0.29830 | 0 | 713 | 950.000 | 75.05263 | 0.6900 | 0 | 694 | 17 | 2.449568 | 0.3163 | 0 | 0 | 0.000000 | 0.2466 | 0 | 7 | 199 | 3.5175879 | 0.39980 | 0 | 68 | 199.000 | 34.170854 | 0.9826 | 1 | 274 | 950 | 28.842105 | 0.9832 | 1 | 2.315741 | 0.4476 | 2 | 2.911600 | 0.70420 | 2 | 0.6900 | 0.6839 | 0 | 2.92850 | 0.6794 | 2 | 8.845841 | 0.6188 | 6 | Yes |
| 02020000300 | 02 | 020 | 000300 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 6308 | 1834 | 1707 | 1137 | 5839 | 19.47251 | 0.4988 | 0 | 59 | 1024 | 5.761719 | 0.26830 | 0 | 11 | 11 | 100.00000 | 0.99780 | 1 | 609 | 1696 | 35.90802 | 0.17490 | 0 | 620 | 1707 | 36.32103 | 0.215100 | 0 | 85 | 2458 | 3.458096 | 0.12670 | 0 | 125 | 4961 | 2.519653 | 0.02643 | 0 | 0 | 0.000000 | 0.003301 | 0 | 2744 | 43.500317 | 0.99640 | 1 | 54 | 2007 | 2.690583 | 0.007821 | 0 | 301 | 1635 | 18.40979 | 0.6168 | 0 | 11 | 5308 | 0.2072344 | 0.06620 | 0 | 2167 | 6308 | 34.35320 | 0.3715 | 0 | 1834 | 24 | 1.308615 | 0.27080 | 0 | 0 | 0.0000000 | 0.2497 | 0 | 10 | 1707 | 0.5858231 | 0.1573 | 0 | 10 | 1707 | 0.5858231 | 0.07765 | 0 | 469 | 6308 | 7.4350032 | 0.9359 | 1 | 1.135330 | 0.1355 | 0 | 1.690522 | 0.13070 | 1 | 0.3715 | 0.3677 | 0 | 1.69135 | 0.1520 | 1 | 4.888702 | 0.1113 | 2 | 8256 | 1834 | 1731 | 1603 | 6583 | 24.35060 | 0.6772 | 0 | 95 | 1105 | 8.597285 | 0.8029 | 1 | 7 | 16 | 43.750000 | 0.91050 | 1 | 1127 | 1715 | 65.71429 | 0.88900 | 1 | 1134 | 1731 | 65.51127 | 0.985700 | 1 | 148 | 3181 | 4.652625 | 0.23830 | 0 | 80 | 5243 | 1.525844 | 0.08775 | 0 | 119 | 1.4413760 | 0.00975 | 0 | 3086 | 37.37888 | 0.9880 | 1 | 193 | 2171.088 | 8.889551 | 0.188800 | 0 | 136 | 1429.97 | 9.510687 | 0.3216 | 0 | 0 | 7040 | 0.0000000 | 0.02391 | 0 | 3808 | 8256.294 | 46.12239 | 0.4209 | 0 | 1834 | 127 | 6.924755 | 0.4701 | 0 | 0 | 0.000000 | 0.2466 | 0 | 13 | 1731 | 0.7510110 | 0.12710 | 0 | 179 | 1731.395 | 10.338487 | 0.7913 | 1 | 1673 | 8256 | 20.264050 | 0.9768 | 1 | 2.791850 | 0.5891 | 2 | 1.532060 | 0.07776 | 1 | 0.4209 | 0.4172 | 0 | 2.61190 | 0.5330 | 2 | 7.356710 | 0.4139 | 5 | Yes |
| 02020000400 | 02 | 020 | 000400 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 5991 | 1360 | 1246 | 628 | 4602 | 13.64624 | 0.3404 | 0 | 117 | 924 | 12.662338 | 0.81630 | 1 | 0 | 12 | 0.00000 | 0.00240 | 0 | 761 | 1234 | 61.66937 | 0.78730 | 1 | 761 | 1246 | 61.07544 | 0.929600 | 1 | 24 | 1995 | 1.203008 | 0.03078 | 0 | 55 | 4075 | 1.349693 | 0.01061 | 0 | 0 | 0.000000 | 0.003301 | 0 | 2117 | 35.336338 | 0.93430 | 1 | 86 | 1820 | 4.725275 | 0.029420 | 0 | 138 | 1246 | 11.07544 | 0.3314 | 0 | 14 | 5099 | 0.2745636 | 0.07606 | 0 | 1539 | 5991 | 25.68853 | 0.2688 | 0 | 1360 | 0 | 0.000000 | 0.09395 | 0 | 10 | 0.7352941 | 0.5653 | 0 | 38 | 1246 | 3.0497592 | 0.4365 | 0 | 21 | 1246 | 1.6853933 | 0.19700 | 0 | 1389 | 5991 | 23.1847772 | 0.9762 | 1 | 2.127690 | 0.4021 | 2 | 1.374481 | 0.05613 | 1 | 0.2688 | 0.2660 | 0 | 2.26895 | 0.3836 | 1 | 6.039921 | 0.2480 | 4 | 5090 | 1440 | 1377 | 657 | 4243 | 15.48433 | 0.4416 | 0 | 82 | 1435 | 5.714286 | 0.5455 | 0 | 0 | 0 | NaN | NA | NA | 912 | 1377 | 66.23094 | 0.89700 | 1 | 912 | 1377 | 66.23094 | 0.987300 | 1 | 28 | 1928 | 1.452282 | 0.05471 | 0 | 82 | 3349 | 2.448492 | 0.16300 | 0 | 12 | 0.2357564 | 0.00585 | 0 | 1446 | 28.40864 | 0.8460 | 1 | 68 | 1902.717 | 3.573837 | 0.008563 | 0 | 56 | 1032.00 | 5.426357 | 0.1342 | 0 | 9 | 4411 | 0.2040354 | 0.06983 | 0 | 2444 | 5089.955 | 48.01614 | 0.4425 | 0 | 1440 | 38 | 2.638889 | 0.3255 | 0 | 0 | 0.000000 | 0.2466 | 0 | 7 | 1377 | 0.5083515 | 0.09514 | 0 | 92 | 1377.000 | 6.681191 | 0.6436 | 0 | 820 | 5090 | 16.110020 | 0.9730 | 1 | 2.192110 | 0.4140 | 1 | 1.064443 | 0.02264 | 1 | 0.4425 | 0.4386 | 0 | 2.28384 | 0.3878 | 1 | 5.982893 | 0.2198 | 3 | Yes |
| 02020000500 | 02 | 020 | 000500 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 1872 | 979 | 956 | 384 | 1872 | 20.51282 | 0.5238 | 0 | 30 | 957 | 3.134796 | 0.06633 | 0 | 56 | 149 | 37.58389 | 0.39630 | 0 | 321 | 807 | 39.77695 | 0.23920 | 0 | 377 | 956 | 39.43515 | 0.311800 | 0 | 190 | 1139 | 16.681299 | 0.60890 | 0 | 314 | 2109 | 14.888573 | 0.48950 | 0 | 221 | 11.805556 | 0.574800 | 0 | 434 | 23.183761 | 0.43040 | 0 | 307 | 1475 | 20.813559 | 0.894900 | 1 | 91 | 385 | 23.63636 | 0.7603 | 1 | 129 | 1793 | 7.1946458 | 0.58420 | 0 | 1048 | 1872 | 55.98291 | 0.5787 | 0 | 979 | 578 | 59.039837 | 0.95260 | 1 | 0 | 0.0000000 | 0.2497 | 0 | 22 | 956 | 2.3012552 | 0.3729 | 0 | 78 | 956 | 8.1589958 | 0.68640 | 0 | 0 | 1872 | 0.0000000 | 0.3743 | 0 | 2.000330 | 0.3676 | 0 | 3.244600 | 0.82880 | 2 | 0.5787 | 0.5727 | 0 | 2.63590 | 0.5502 | 1 | 8.459530 | 0.5669 | 3 | 2039 | 1074 | 985 | 624 | 2039 | 30.60324 | 0.7906 | 1 | 119 | 1125 | 10.577778 | 0.8901 | 1 | 42 | 138 | 30.434783 | 0.56020 | 0 | 361 | 847 | 42.62102 | 0.32940 | 0 | 403 | 985 | 40.91371 | 0.614800 | 0 | 61 | 1468 | 4.155313 | 0.20970 | 0 | 350 | 1966 | 17.802645 | 0.95510 | 1 | 200 | 9.8087298 | 0.22920 | 0 | 322 | 15.79205 | 0.1707 | 0 | 233 | 1644.283 | 14.170309 | 0.581400 | 0 | 143 | 338.00 | 42.307692 | 0.9859 | 1 | 48 | 1920 | 2.5000000 | 0.35480 | 0 | 1060 | 2039.045 | 51.98512 | 0.4840 | 0 | 1074 | 642 | 59.776536 | 0.9485 | 1 | 0 | 0.000000 | 0.2466 | 0 | 39 | 985 | 3.9593909 | 0.43720 | 0 | 230 | 985.000 | 23.350254 | 0.9573 | 1 | 0 | 2039 | 0.000000 | 0.1370 | 0 | 3.460300 | 0.7607 | 3 | 2.322000 | 0.38140 | 1 | 0.4840 | 0.4797 | 0 | 2.72660 | 0.5866 | 2 | 8.992900 | 0.6375 | 6 | Yes |
| 02020000600 | 02 | 020 | 000600 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 6502 | 2547 | 2297 | 2979 | 6488 | 45.91554 | 0.9023 | 1 | 405 | 2951 | 13.724161 | 0.85840 | 1 | 125 | 420 | 29.76190 | 0.16330 | 0 | 940 | 1877 | 50.07991 | 0.48980 | 0 | 1065 | 2297 | 46.36482 | 0.564500 | 0 | 1084 | 3392 | 31.957547 | 0.82070 | 1 | 1929 | 6823 | 28.272021 | 0.86800 | 1 | 301 | 4.629345 | 0.088050 | 0 | 2216 | 34.081821 | 0.90820 | 1 | 1084 | 4580 | 23.668122 | 0.942300 | 1 | 710 | 1495 | 47.49164 | 0.9914 | 1 | 479 | 5750 | 8.3304348 | 0.62260 | 0 | 4671 | 6502 | 71.83943 | 0.7062 | 0 | 2547 | 512 | 20.102081 | 0.74490 | 0 | 24 | 0.9422850 | 0.5880 | 0 | 384 | 2297 | 16.7174576 | 0.8552 | 1 | 514 | 2297 | 22.3770135 | 0.94220 | 1 | 52 | 6502 | 0.7997539 | 0.7682 | 1 | 4.013900 | 0.8673 | 4 | 3.552550 | 0.92110 | 3 | 0.7062 | 0.6989 | 0 | 3.89850 | 0.9653 | 3 | 12.171150 | 0.9496 | 10 | 7641 | 2942 | 2510 | 3841 | 7418 | 51.77946 | 0.9712 | 1 | 278 | 2450 | 11.346939 | 0.9134 | 1 | 273 | 771 | 35.408560 | 0.73590 | 0 | 943 | 1739 | 54.22657 | 0.63530 | 0 | 1216 | 2510 | 48.44622 | 0.817700 | 1 | 562 | 4063 | 13.832144 | 0.62240 | 0 | 702 | 7423 | 9.457093 | 0.74250 | 0 | 614 | 8.0355974 | 0.13620 | 0 | 3131 | 40.97631 | 0.9967 | 1 | 994 | 4292.000 | 23.159366 | 0.926700 | 1 | 685 | 1527.00 | 44.859201 | 0.9910 | 1 | 222 | 6659 | 3.3338339 | 0.42160 | 0 | 5706 | 7641.000 | 74.67609 | 0.6868 | 0 | 2942 | 331 | 11.250850 | 0.5797 | 0 | 33 | 1.121686 | 0.6182 | 0 | 284 | 2510 | 11.3147410 | 0.76010 | 1 | 564 | 2510.000 | 22.470119 | 0.9540 | 1 | 204 | 7641 | 2.669808 | 0.8654 | 1 | 4.067200 | 0.8945 | 3 | 3.472200 | 0.91650 | 3 | 0.6868 | 0.6807 | 0 | 3.77740 | 0.9460 | 3 | 12.003600 | 0.9504 | 9 | Yes |
# National data
svi_national_nmtc_eligible <- left_join(svi_national, nmtc_eligible_df, join_by("GEOID_2010_trt" == "GEOID10")) %>% filter(tolower(nmtc_eligibility) == "yes")
svi_national_nmtc_eligible %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | nmtc_eligibility |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 01001020200 | 01 | 001 | 020200 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2020 | 816 | 730 | 495 | 1992 | 24.84940 | 0.5954 | 0 | 68 | 834 | 8.153477 | 0.57540 | 0 | 49 | 439 | 11.16173 | 0.02067 | 0 | 105 | 291 | 36.08247 | 0.30190 | 0 | 154 | 730 | 21.09589 | 0.09312 | 0 | 339 | 1265 | 26.79842 | 0.8392 | 1 | 313 | 2012 | 15.55666 | 0.6000 | 0 | 204 | 10.09901 | 0.3419 | 0 | 597 | 29.55446 | 0.8192 | 1 | 359 | 1515 | 23.69637 | 0.8791 | 1 | 132 | 456 | 28.947368 | 0.8351 | 1 | 15 | 1890 | 0.7936508 | 0.40130 | 0 | 1243 | 2020 | 61.53465 | 0.7781 | 1 | 816 | 0 | 0.0000000 | 0.1224 | 0 | 34 | 4.1666667 | 0.6664 | 0 | 13 | 730 | 1.780822 | 0.5406 | 0 | 115 | 730 | 15.753425 | 0.8382 | 1 | 0 | 2020 | 0.0000 | 0.3640 | 0 | 2.70312 | 0.5665 | 1 | 3.27660 | 0.8614 | 3 | 0.7781 | 0.7709 | 1 | 2.5316 | 0.5047 | 1 | 9.28942 | 0.6832 | 6 | 1757 | 720 | 573 | 384 | 1511 | 25.41363 | 0.6427 | 0 | 29 | 717 | 4.044630 | 0.4132 | 0 | 33 | 392 | 8.418367 | 0.03542 | 0 | 116 | 181 | 64.08840 | 0.9086 | 1 | 149 | 573 | 26.00349 | 0.40410 | 0 | 139 | 1313 | 10.58644 | 0.5601 | 0 | 91 | 1533 | 5.936073 | 0.4343 | 0 | 284 | 16.163916 | 0.5169 | 0 | 325 | 18.49744 | 0.2851 | 0 | 164 | 1208.000 | 13.57616 | 0.4127 | 0 | 42 | 359.0000 | 11.699164 | 0.3998 | 0 | 0 | 1651 | 0.0000000 | 0.09479 | 0 | 1116 | 1757.000 | 63.51736 | 0.7591 | 1 | 720 | 3 | 0.4166667 | 0.2470 | 0 | 5 | 0.6944444 | 0.5106 | 0 | 9 | 573 | 1.5706806 | 0.4688 | 0 | 57 | 573.000 | 9.947644 | 0.7317 | 0 | 212 | 1757 | 12.0660216 | 0.9549 | 1 | 2.45440 | 0.4888 | 0 | 1.70929 | 0.1025 | 0 | 0.7591 | 0.7527 | 1 | 2.9130 | 0.6862 | 1 | 7.83579 | 0.4802 | 2 | Yes |
| 01001020700 | 01 | 001 | 020700 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2664 | 1254 | 1139 | 710 | 2664 | 26.65165 | 0.6328 | 0 | 29 | 1310 | 2.213741 | 0.05255 | 0 | 134 | 710 | 18.87324 | 0.13890 | 0 | 187 | 429 | 43.58974 | 0.47090 | 0 | 321 | 1139 | 28.18262 | 0.28130 | 0 | 396 | 1852 | 21.38229 | 0.7478 | 0 | 345 | 2878 | 11.98749 | 0.4459 | 0 | 389 | 14.60210 | 0.6417 | 0 | 599 | 22.48499 | 0.4007 | 0 | 510 | 2168 | 23.52399 | 0.8752 | 1 | 228 | 712 | 32.022472 | 0.8712 | 1 | 0 | 2480 | 0.0000000 | 0.09298 | 0 | 694 | 2664 | 26.05105 | 0.5138 | 0 | 1254 | 8 | 0.6379585 | 0.2931 | 0 | 460 | 36.6826156 | 0.9714 | 1 | 0 | 1139 | 0.000000 | 0.1238 | 0 | 125 | 1139 | 10.974539 | 0.7477 | 0 | 0 | 2664 | 0.0000 | 0.3640 | 0 | 2.16035 | 0.4069 | 0 | 2.88178 | 0.6997 | 2 | 0.5138 | 0.5090 | 0 | 2.5000 | 0.4882 | 1 | 8.05593 | 0.5185 | 3 | 3562 | 1313 | 1248 | 1370 | 3528 | 38.83220 | 0.8512 | 1 | 128 | 1562 | 8.194622 | 0.7935 | 1 | 168 | 844 | 19.905213 | 0.44510 | 0 | 237 | 404 | 58.66337 | 0.8359 | 1 | 405 | 1248 | 32.45192 | 0.60420 | 0 | 396 | 2211 | 17.91045 | 0.7857 | 1 | 444 | 3547 | 12.517620 | 0.7758 | 1 | 355 | 9.966311 | 0.1800 | 0 | 954 | 26.78271 | 0.7923 | 1 | 629 | 2593.000 | 24.25762 | 0.8730 | 1 | 171 | 797.0000 | 21.455458 | 0.7186 | 0 | 0 | 3211 | 0.0000000 | 0.09479 | 0 | 1009 | 3562.000 | 28.32678 | 0.4668 | 0 | 1313 | 14 | 1.0662605 | 0.3165 | 0 | 443 | 33.7395278 | 0.9663 | 1 | 73 | 1248 | 5.8493590 | 0.8211 | 1 | 17 | 1248.000 | 1.362180 | 0.1554 | 0 | 112 | 3562 | 3.1443010 | 0.8514 | 1 | 3.81040 | 0.8569 | 4 | 2.65869 | 0.5847 | 2 | 0.4668 | 0.4629 | 0 | 3.1107 | 0.7714 | 3 | 10.04659 | 0.7851 | 9 | Yes |
| 01001021100 | 01 | 001 | 021100 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3298 | 1502 | 1323 | 860 | 3298 | 26.07641 | 0.6211 | 0 | 297 | 1605 | 18.504673 | 0.94340 | 1 | 250 | 1016 | 24.60630 | 0.32070 | 0 | 74 | 307 | 24.10423 | 0.11920 | 0 | 324 | 1323 | 24.48980 | 0.17380 | 0 | 710 | 2231 | 31.82429 | 0.8976 | 1 | 654 | 3565 | 18.34502 | 0.7018 | 0 | 411 | 12.46210 | 0.5001 | 0 | 738 | 22.37720 | 0.3934 | 0 | 936 | 2861 | 32.71583 | 0.9807 | 1 | 138 | 825 | 16.727273 | 0.5715 | 0 | 9 | 3155 | 0.2852615 | 0.25010 | 0 | 1979 | 3298 | 60.00606 | 0.7703 | 1 | 1502 | 14 | 0.9320905 | 0.3234 | 0 | 659 | 43.8748336 | 0.9849 | 1 | 44 | 1323 | 3.325775 | 0.7062 | 0 | 137 | 1323 | 10.355253 | 0.7313 | 0 | 0 | 3298 | 0.0000 | 0.3640 | 0 | 3.33770 | 0.7351 | 2 | 2.69580 | 0.6028 | 1 | 0.7703 | 0.7631 | 1 | 3.1098 | 0.7827 | 1 | 9.91360 | 0.7557 | 5 | 3499 | 1825 | 1462 | 1760 | 3499 | 50.30009 | 0.9396 | 1 | 42 | 966 | 4.347826 | 0.4539 | 0 | 426 | 1274 | 33.437991 | 0.85200 | 1 | 52 | 188 | 27.65957 | 0.1824 | 0 | 478 | 1462 | 32.69494 | 0.61110 | 0 | 422 | 2488 | 16.96141 | 0.7638 | 1 | 497 | 3499 | 14.204058 | 0.8246 | 1 | 853 | 24.378394 | 0.8688 | 1 | 808 | 23.09231 | 0.5829 | 0 | 908 | 2691.100 | 33.74084 | 0.9808 | 1 | 179 | 811.6985 | 22.052524 | 0.7323 | 0 | 8 | 3248 | 0.2463054 | 0.26220 | 0 | 1986 | 3498.713 | 56.76373 | 0.7175 | 0 | 1825 | 29 | 1.5890411 | 0.3551 | 0 | 576 | 31.5616438 | 0.9594 | 1 | 88 | 1462 | 6.0191518 | 0.8269 | 1 | 148 | 1461.993 | 10.123166 | 0.7364 | 0 | 38 | 3499 | 1.0860246 | 0.7013 | 0 | 3.59300 | 0.8073 | 3 | 3.42700 | 0.9156 | 2 | 0.7175 | 0.7114 | 0 | 3.5791 | 0.9216 | 2 | 11.31660 | 0.9150 | 7 | Yes |
| 01003010200 | 01 | 003 | 010200 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 2612 | 1220 | 1074 | 338 | 2605 | 12.97505 | 0.2907 | 0 | 44 | 1193 | 3.688181 | 0.14720 | 0 | 172 | 928 | 18.53448 | 0.13090 | 0 | 31 | 146 | 21.23288 | 0.09299 | 0 | 203 | 1074 | 18.90130 | 0.05657 | 0 | 455 | 1872 | 24.30556 | 0.8016 | 1 | 456 | 2730 | 16.70330 | 0.6445 | 0 | 401 | 15.35222 | 0.6847 | 0 | 563 | 21.55436 | 0.3406 | 0 | 410 | 2038 | 20.11776 | 0.7755 | 1 | 64 | 779 | 8.215661 | 0.2181 | 0 | 0 | 2510 | 0.0000000 | 0.09298 | 0 | 329 | 2612 | 12.59571 | 0.3113 | 0 | 1220 | 38 | 3.1147541 | 0.4648 | 0 | 385 | 31.5573770 | 0.9545 | 1 | 20 | 1074 | 1.862197 | 0.5509 | 0 | 43 | 1074 | 4.003724 | 0.4088 | 0 | 0 | 2612 | 0.0000 | 0.3640 | 0 | 1.94057 | 0.3398 | 1 | 2.11188 | 0.2802 | 1 | 0.3113 | 0.3084 | 0 | 2.7430 | 0.6129 | 1 | 7.10675 | 0.3771 | 3 | 2928 | 1312 | 1176 | 884 | 2928 | 30.19126 | 0.7334 | 0 | 29 | 1459 | 1.987663 | 0.1356 | 0 | 71 | 830 | 8.554217 | 0.03726 | 0 | 134 | 346 | 38.72832 | 0.3964 | 0 | 205 | 1176 | 17.43197 | 0.12010 | 0 | 294 | 2052 | 14.32749 | 0.6940 | 0 | 219 | 2925 | 7.487179 | 0.5423 | 0 | 556 | 18.989071 | 0.6705 | 0 | 699 | 23.87295 | 0.6339 | 0 | 489 | 2226.455 | 21.96317 | 0.8122 | 1 | 191 | 783.8820 | 24.365914 | 0.7799 | 1 | 0 | 2710 | 0.0000000 | 0.09479 | 0 | 398 | 2927.519 | 13.59513 | 0.2511 | 0 | 1312 | 13 | 0.9908537 | 0.3111 | 0 | 400 | 30.4878049 | 0.9557 | 1 | 6 | 1176 | 0.5102041 | 0.2590 | 0 | 81 | 1176.202 | 6.886570 | 0.6115 | 0 | 7 | 2928 | 0.2390710 | 0.4961 | 0 | 2.22540 | 0.4183 | 0 | 2.99129 | 0.7634 | 2 | 0.2511 | 0.2490 | 0 | 2.6334 | 0.5496 | 1 | 8.10119 | 0.5207 | 3 | Yes |
| 01003010500 | 01 | 003 | 010500 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 4230 | 1779 | 1425 | 498 | 3443 | 14.46413 | 0.3337 | 0 | 166 | 1625 | 10.215385 | 0.71790 | 0 | 151 | 1069 | 14.12535 | 0.04638 | 0 | 196 | 356 | 55.05618 | 0.73830 | 0 | 347 | 1425 | 24.35088 | 0.17010 | 0 | 707 | 2945 | 24.00679 | 0.7967 | 1 | 528 | 4001 | 13.19670 | 0.5005 | 0 | 619 | 14.63357 | 0.6436 | 0 | 790 | 18.67612 | 0.1937 | 0 | 536 | 3096 | 17.31266 | 0.6572 | 0 | 165 | 920 | 17.934783 | 0.6102 | 0 | 20 | 4021 | 0.4973887 | 0.32320 | 0 | 754 | 4230 | 17.82506 | 0.4023 | 0 | 1779 | 97 | 5.4525014 | 0.5525 | 0 | 8 | 0.4496908 | 0.4600 | 0 | 63 | 1425 | 4.421053 | 0.7762 | 1 | 90 | 1425 | 6.315790 | 0.5691 | 0 | 787 | 4230 | 18.6052 | 0.9649 | 1 | 2.51890 | 0.5121 | 1 | 2.42790 | 0.4539 | 0 | 0.4023 | 0.3986 | 0 | 3.3227 | 0.8628 | 2 | 8.67180 | 0.6054 | 3 | 5877 | 1975 | 1836 | 820 | 5244 | 15.63692 | 0.3902 | 0 | 90 | 2583 | 3.484321 | 0.3361 | 0 | 159 | 1345 | 11.821561 | 0.10530 | 0 | 139 | 491 | 28.30957 | 0.1924 | 0 | 298 | 1836 | 16.23094 | 0.09053 | 0 | 570 | 4248 | 13.41808 | 0.6669 | 0 | 353 | 5247 | 6.727654 | 0.4924 | 0 | 1109 | 18.870172 | 0.6645 | 0 | 1144 | 19.46571 | 0.3411 | 0 | 717 | 4102.545 | 17.47696 | 0.6332 | 0 | 103 | 1286.1180 | 8.008596 | 0.2341 | 0 | 0 | 5639 | 0.0000000 | 0.09479 | 0 | 868 | 5877.481 | 14.76823 | 0.2709 | 0 | 1975 | 26 | 1.3164557 | 0.3359 | 0 | 45 | 2.2784810 | 0.6271 | 0 | 9 | 1836 | 0.4901961 | 0.2540 | 0 | 116 | 1835.798 | 6.318779 | 0.5811 | 0 | 633 | 5877 | 10.7708014 | 0.9507 | 1 | 1.97613 | 0.3410 | 0 | 1.96769 | 0.1961 | 0 | 0.2709 | 0.2686 | 0 | 2.7488 | 0.6077 | 1 | 6.96352 | 0.3406 | 1 | Yes |
| 01003010600 | 01 | 003 | 010600 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 3724 | 1440 | 1147 | 1973 | 3724 | 52.98067 | 0.9342 | 1 | 142 | 1439 | 9.867964 | 0.69680 | 0 | 235 | 688 | 34.15698 | 0.62950 | 0 | 187 | 459 | 40.74074 | 0.40290 | 0 | 422 | 1147 | 36.79163 | 0.55150 | 0 | 497 | 1876 | 26.49254 | 0.8354 | 1 | 511 | 3661 | 13.95794 | 0.5334 | 0 | 246 | 6.60580 | 0.1481 | 0 | 1256 | 33.72718 | 0.9305 | 1 | 496 | 2522 | 19.66693 | 0.7587 | 1 | 274 | 838 | 32.696897 | 0.8779 | 1 | 32 | 3479 | 0.9198045 | 0.42810 | 0 | 2606 | 3724 | 69.97852 | 0.8184 | 1 | 1440 | 21 | 1.4583333 | 0.3683 | 0 | 321 | 22.2916667 | 0.9036 | 1 | 97 | 1147 | 8.456844 | 0.8956 | 1 | 167 | 1147 | 14.559721 | 0.8209 | 1 | 0 | 3724 | 0.0000 | 0.3640 | 0 | 3.55130 | 0.7859 | 2 | 3.14330 | 0.8145 | 3 | 0.8184 | 0.8108 | 1 | 3.3524 | 0.8725 | 3 | 10.86540 | 0.8550 | 9 | 4115 | 1534 | 1268 | 1676 | 3997 | 41.93145 | 0.8814 | 1 | 294 | 1809 | 16.252073 | 0.9674 | 1 | 341 | 814 | 41.891892 | 0.94320 | 1 | 204 | 454 | 44.93392 | 0.5438 | 0 | 545 | 1268 | 42.98107 | 0.83620 | 1 | 624 | 2425 | 25.73196 | 0.9002 | 1 | 994 | 4115 | 24.155529 | 0.9602 | 1 | 642 | 15.601458 | 0.4841 | 0 | 1126 | 27.36331 | 0.8175 | 1 | 568 | 2989.000 | 19.00301 | 0.7045 | 0 | 212 | 715.0000 | 29.650350 | 0.8592 | 1 | 56 | 3825 | 1.4640523 | 0.53120 | 0 | 2715 | 4115.000 | 65.97813 | 0.7732 | 1 | 1534 | 0 | 0.0000000 | 0.1079 | 0 | 529 | 34.4850065 | 0.9685 | 1 | 101 | 1268 | 7.9652997 | 0.8795 | 1 | 89 | 1268.000 | 7.018927 | 0.6184 | 0 | 17 | 4115 | 0.4131227 | 0.5707 | 0 | 4.54540 | 0.9754 | 5 | 3.39650 | 0.9081 | 2 | 0.7732 | 0.7667 | 1 | 3.1450 | 0.7858 | 2 | 11.86010 | 0.9520 | 10 | Yes |
# Join divisional data to nmtc_awards_pre2010, set count to 0 if no data
svi_divisional_nmtc_eligible <-
left_join(svi_divisional_nmtc_eligible, nmtc_awards_pre2010, join_by("GEOID_2010_trt" == "GEOID10")) %>%
mutate(pre10_nmtc_project_cnt = if_else(is.na(pre10_nmtc_project_cnt), 0, pre10_nmtc_project_cnt)) %>%
mutate(pre10_nmtc_dollars = if_else(is.na(pre10_nmtc_dollars), 0, pre10_nmtc_dollars)) %>%
mutate(pre10_nmtc_dollars_formatted = if_else(is.na(pre10_nmtc_dollars_formatted), "$0", pre10_nmtc_dollars_formatted))
# View table
svi_divisional_nmtc_eligible %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | nmtc_eligibility | pre10_nmtc_project_cnt | pre10_nmtc_dollars | pre10_nmtc_dollars_formatted |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 02013000100 | 02 | 013 | 000100 | AK | Alaska | Aleutians East Borough | 4 | West Region | 9 | Pacific Division | 3703 | 474 | 267 | 1212 | 3695 | 32.80108 | 0.7570 | 1 | 111 | 3163 | 3.509327 | 0.08691 | 0 | 25 | 158 | 15.82278 | 0.01337 | 0 | 17 | 109 | 15.59633 | 0.02605 | 0 | 42 | 267 | 15.73034 | 0.004754 | 0 | 1082 | 3017 | 35.863441 | 0.85420 | 1 | 2060 | 3112 | 66.195373 | 0.99990 | 1 | 127 | 3.429652 | 0.042400 | 0 | 315 | 8.506616 | 0.03961 | 0 | 182 | 2849 | 6.388206 | 0.077750 | 0 | 50 | 165 | 30.30303 | 0.8835 | 1 | 1070 | 3617 | 29.5825270 | 0.93700 | 1 | 3492 | 3703 | 94.30192 | 0.9141 | 1 | 474 | 8 | 1.687764 | 0.29250 | 0 | 42 | 8.8607595 | 0.8128 | 1 | 7 | 267 | 2.6217228 | 0.4003 | 0 | 77 | 267 | 28.8389513 | 0.96850 | 1 | 2969 | 3703 | 80.1782339 | 0.9940 | 1 | 2.702764 | 0.5611 | 3 | 1.980260 | 0.23800 | 2 | 0.9141 | 0.9047 | 1 | 3.46810 | 0.8902 | 3 | 9.065224 | 0.6397 | 9 | 3389 | 1199 | 988 | 698 | 3379 | 20.65700 | 0.5925 | 0 | 86 | 2414 | 3.562552 | 0.2665 | 0 | 67 | 607 | 11.037891 | 0.01803 | 0 | 74 | 381 | 19.42257 | 0.04067 | 0 | 141 | 988 | 14.27126 | 0.006988 | 0 | 354 | 2646 | 13.378685 | 0.61070 | 0 | 1345 | 3384 | 39.745863 | 0.99970 | 1 | 381 | 11.2422544 | 0.31390 | 0 | 443 | 13.07170 | 0.0988 | 0 | 339 | 2941.000 | 11.526692 | 0.386000 | 0 | 135 | 593.00 | 22.765599 | 0.7920 | 1 | 334 | 3276 | 10.1953602 | 0.72620 | 0 | 2939 | 3389.000 | 86.72175 | 0.8110 | 1 | 1199 | 38 | 3.169308 | 0.3474 | 0 | 69 | 5.754796 | 0.7806 | 1 | 30 | 988 | 3.0364372 | 0.36010 | 0 | 220 | 988.000 | 22.267207 | 0.9527 | 1 | 1035 | 3389 | 30.539982 | 0.9843 | 1 | 2.476388 | 0.4947 | 1 | 2.316900 | 0.37850 | 1 | 0.8110 | 0.8038 | 1 | 3.42510 | 0.8683 | 3 | 9.029388 | 0.6419 | 6 | Yes | 0 | 0 | \$0 |
| 02016000100 | 02 | 016 | 000100 | AK | Alaska | Aleutians West Census Area | 4 | West Region | 9 | Pacific Division | 1774 | 1056 | 166 | 328 | 1231 | 26.64500 | 0.6553 | 0 | 15 | 1370 | 1.094890 | 0.01369 | 0 | 25 | 95 | 26.31579 | 0.09653 | 0 | 16 | 71 | 22.53521 | 0.05099 | 0 | 41 | 166 | 24.69880 | 0.029080 | 0 | 207 | 1330 | 15.563910 | 0.58390 | 0 | 484 | 973 | 49.743063 | 0.99520 | 1 | 53 | 2.987599 | 0.031800 | 0 | 182 | 10.259301 | 0.05188 | 0 | 147 | 747 | 19.678715 | 0.864200 | 1 | 19 | 96 | 19.79167 | 0.6606 | 0 | 79 | 1718 | 4.5983702 | 0.46890 | 0 | 1154 | 1774 | 65.05073 | 0.6522 | 0 | 1056 | 22 | 2.083333 | 0.31610 | 0 | 0 | 0.0000000 | 0.2497 | 0 | 10 | 166 | 6.0240964 | 0.6154 | 0 | 84 | 166 | 50.6024096 | 0.99320 | 1 | 1324 | 1774 | 74.6335964 | 0.9935 | 1 | 2.277170 | 0.4443 | 1 | 2.077380 | 0.27780 | 1 | 0.6522 | 0.6454 | 0 | 3.16790 | 0.7874 | 2 | 8.174650 | 0.5311 | 4 | 950 | 694 | 199 | 218 | 719 | 30.31989 | 0.7848 | 1 | 15 | 560 | 2.678571 | 0.1560 | 0 | 11 | 117 | 9.401709 | 0.01305 | 0 | 14 | 82 | 17.07317 | 0.03088 | 0 | 25 | 199 | 12.56281 | 0.003541 | 0 | 48 | 681 | 7.048458 | 0.37250 | 0 | 238 | 721 | 33.009709 | 0.99890 | 1 | 116 | 12.2105263 | 0.37310 | 0 | 195 | 20.52632 | 0.4153 | 0 | 113 | 526.000 | 21.482890 | 0.893100 | 1 | 31 | 98.00 | 31.632653 | 0.9318 | 1 | 17 | 900 | 1.8888889 | 0.29830 | 0 | 713 | 950.000 | 75.05263 | 0.6900 | 0 | 694 | 17 | 2.449568 | 0.3163 | 0 | 0 | 0.000000 | 0.2466 | 0 | 7 | 199 | 3.5175879 | 0.39980 | 0 | 68 | 199.000 | 34.170854 | 0.9826 | 1 | 274 | 950 | 28.842105 | 0.9832 | 1 | 2.315741 | 0.4476 | 2 | 2.911600 | 0.70420 | 2 | 0.6900 | 0.6839 | 0 | 2.92850 | 0.6794 | 2 | 8.845841 | 0.6188 | 6 | Yes | 0 | 0 | \$0 |
| 02020000300 | 02 | 020 | 000300 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 6308 | 1834 | 1707 | 1137 | 5839 | 19.47251 | 0.4988 | 0 | 59 | 1024 | 5.761719 | 0.26830 | 0 | 11 | 11 | 100.00000 | 0.99780 | 1 | 609 | 1696 | 35.90802 | 0.17490 | 0 | 620 | 1707 | 36.32103 | 0.215100 | 0 | 85 | 2458 | 3.458096 | 0.12670 | 0 | 125 | 4961 | 2.519653 | 0.02643 | 0 | 0 | 0.000000 | 0.003301 | 0 | 2744 | 43.500317 | 0.99640 | 1 | 54 | 2007 | 2.690583 | 0.007821 | 0 | 301 | 1635 | 18.40979 | 0.6168 | 0 | 11 | 5308 | 0.2072344 | 0.06620 | 0 | 2167 | 6308 | 34.35320 | 0.3715 | 0 | 1834 | 24 | 1.308615 | 0.27080 | 0 | 0 | 0.0000000 | 0.2497 | 0 | 10 | 1707 | 0.5858231 | 0.1573 | 0 | 10 | 1707 | 0.5858231 | 0.07765 | 0 | 469 | 6308 | 7.4350032 | 0.9359 | 1 | 1.135330 | 0.1355 | 0 | 1.690522 | 0.13070 | 1 | 0.3715 | 0.3677 | 0 | 1.69135 | 0.1520 | 1 | 4.888702 | 0.1113 | 2 | 8256 | 1834 | 1731 | 1603 | 6583 | 24.35060 | 0.6772 | 0 | 95 | 1105 | 8.597285 | 0.8029 | 1 | 7 | 16 | 43.750000 | 0.91050 | 1 | 1127 | 1715 | 65.71429 | 0.88900 | 1 | 1134 | 1731 | 65.51127 | 0.985700 | 1 | 148 | 3181 | 4.652625 | 0.23830 | 0 | 80 | 5243 | 1.525844 | 0.08775 | 0 | 119 | 1.4413760 | 0.00975 | 0 | 3086 | 37.37888 | 0.9880 | 1 | 193 | 2171.088 | 8.889551 | 0.188800 | 0 | 136 | 1429.97 | 9.510687 | 0.3216 | 0 | 0 | 7040 | 0.0000000 | 0.02391 | 0 | 3808 | 8256.294 | 46.12239 | 0.4209 | 0 | 1834 | 127 | 6.924755 | 0.4701 | 0 | 0 | 0.000000 | 0.2466 | 0 | 13 | 1731 | 0.7510110 | 0.12710 | 0 | 179 | 1731.395 | 10.338487 | 0.7913 | 1 | 1673 | 8256 | 20.264050 | 0.9768 | 1 | 2.791850 | 0.5891 | 2 | 1.532060 | 0.07776 | 1 | 0.4209 | 0.4172 | 0 | 2.61190 | 0.5330 | 2 | 7.356710 | 0.4139 | 5 | Yes | 0 | 0 | \$0 |
| 02020000400 | 02 | 020 | 000400 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 5991 | 1360 | 1246 | 628 | 4602 | 13.64624 | 0.3404 | 0 | 117 | 924 | 12.662338 | 0.81630 | 1 | 0 | 12 | 0.00000 | 0.00240 | 0 | 761 | 1234 | 61.66937 | 0.78730 | 1 | 761 | 1246 | 61.07544 | 0.929600 | 1 | 24 | 1995 | 1.203008 | 0.03078 | 0 | 55 | 4075 | 1.349693 | 0.01061 | 0 | 0 | 0.000000 | 0.003301 | 0 | 2117 | 35.336338 | 0.93430 | 1 | 86 | 1820 | 4.725275 | 0.029420 | 0 | 138 | 1246 | 11.07544 | 0.3314 | 0 | 14 | 5099 | 0.2745636 | 0.07606 | 0 | 1539 | 5991 | 25.68853 | 0.2688 | 0 | 1360 | 0 | 0.000000 | 0.09395 | 0 | 10 | 0.7352941 | 0.5653 | 0 | 38 | 1246 | 3.0497592 | 0.4365 | 0 | 21 | 1246 | 1.6853933 | 0.19700 | 0 | 1389 | 5991 | 23.1847772 | 0.9762 | 1 | 2.127690 | 0.4021 | 2 | 1.374481 | 0.05613 | 1 | 0.2688 | 0.2660 | 0 | 2.26895 | 0.3836 | 1 | 6.039921 | 0.2480 | 4 | 5090 | 1440 | 1377 | 657 | 4243 | 15.48433 | 0.4416 | 0 | 82 | 1435 | 5.714286 | 0.5455 | 0 | 0 | 0 | NaN | NA | NA | 912 | 1377 | 66.23094 | 0.89700 | 1 | 912 | 1377 | 66.23094 | 0.987300 | 1 | 28 | 1928 | 1.452282 | 0.05471 | 0 | 82 | 3349 | 2.448492 | 0.16300 | 0 | 12 | 0.2357564 | 0.00585 | 0 | 1446 | 28.40864 | 0.8460 | 1 | 68 | 1902.717 | 3.573837 | 0.008563 | 0 | 56 | 1032.00 | 5.426357 | 0.1342 | 0 | 9 | 4411 | 0.2040354 | 0.06983 | 0 | 2444 | 5089.955 | 48.01614 | 0.4425 | 0 | 1440 | 38 | 2.638889 | 0.3255 | 0 | 0 | 0.000000 | 0.2466 | 0 | 7 | 1377 | 0.5083515 | 0.09514 | 0 | 92 | 1377.000 | 6.681191 | 0.6436 | 0 | 820 | 5090 | 16.110020 | 0.9730 | 1 | 2.192110 | 0.4140 | 1 | 1.064443 | 0.02264 | 1 | 0.4425 | 0.4386 | 0 | 2.28384 | 0.3878 | 1 | 5.982893 | 0.2198 | 3 | Yes | 0 | 0 | \$0 |
| 02020000500 | 02 | 020 | 000500 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 1872 | 979 | 956 | 384 | 1872 | 20.51282 | 0.5238 | 0 | 30 | 957 | 3.134796 | 0.06633 | 0 | 56 | 149 | 37.58389 | 0.39630 | 0 | 321 | 807 | 39.77695 | 0.23920 | 0 | 377 | 956 | 39.43515 | 0.311800 | 0 | 190 | 1139 | 16.681299 | 0.60890 | 0 | 314 | 2109 | 14.888573 | 0.48950 | 0 | 221 | 11.805556 | 0.574800 | 0 | 434 | 23.183761 | 0.43040 | 0 | 307 | 1475 | 20.813559 | 0.894900 | 1 | 91 | 385 | 23.63636 | 0.7603 | 1 | 129 | 1793 | 7.1946458 | 0.58420 | 0 | 1048 | 1872 | 55.98291 | 0.5787 | 0 | 979 | 578 | 59.039837 | 0.95260 | 1 | 0 | 0.0000000 | 0.2497 | 0 | 22 | 956 | 2.3012552 | 0.3729 | 0 | 78 | 956 | 8.1589958 | 0.68640 | 0 | 0 | 1872 | 0.0000000 | 0.3743 | 0 | 2.000330 | 0.3676 | 0 | 3.244600 | 0.82880 | 2 | 0.5787 | 0.5727 | 0 | 2.63590 | 0.5502 | 1 | 8.459530 | 0.5669 | 3 | 2039 | 1074 | 985 | 624 | 2039 | 30.60324 | 0.7906 | 1 | 119 | 1125 | 10.577778 | 0.8901 | 1 | 42 | 138 | 30.434783 | 0.56020 | 0 | 361 | 847 | 42.62102 | 0.32940 | 0 | 403 | 985 | 40.91371 | 0.614800 | 0 | 61 | 1468 | 4.155313 | 0.20970 | 0 | 350 | 1966 | 17.802645 | 0.95510 | 1 | 200 | 9.8087298 | 0.22920 | 0 | 322 | 15.79205 | 0.1707 | 0 | 233 | 1644.283 | 14.170309 | 0.581400 | 0 | 143 | 338.00 | 42.307692 | 0.9859 | 1 | 48 | 1920 | 2.5000000 | 0.35480 | 0 | 1060 | 2039.045 | 51.98512 | 0.4840 | 0 | 1074 | 642 | 59.776536 | 0.9485 | 1 | 0 | 0.000000 | 0.2466 | 0 | 39 | 985 | 3.9593909 | 0.43720 | 0 | 230 | 985.000 | 23.350254 | 0.9573 | 1 | 0 | 2039 | 0.000000 | 0.1370 | 0 | 3.460300 | 0.7607 | 3 | 2.322000 | 0.38140 | 1 | 0.4840 | 0.4797 | 0 | 2.72660 | 0.5866 | 2 | 8.992900 | 0.6375 | 6 | Yes | 0 | 0 | \$0 |
| 02020000600 | 02 | 020 | 000600 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 6502 | 2547 | 2297 | 2979 | 6488 | 45.91554 | 0.9023 | 1 | 405 | 2951 | 13.724161 | 0.85840 | 1 | 125 | 420 | 29.76190 | 0.16330 | 0 | 940 | 1877 | 50.07991 | 0.48980 | 0 | 1065 | 2297 | 46.36482 | 0.564500 | 0 | 1084 | 3392 | 31.957547 | 0.82070 | 1 | 1929 | 6823 | 28.272021 | 0.86800 | 1 | 301 | 4.629345 | 0.088050 | 0 | 2216 | 34.081821 | 0.90820 | 1 | 1084 | 4580 | 23.668122 | 0.942300 | 1 | 710 | 1495 | 47.49164 | 0.9914 | 1 | 479 | 5750 | 8.3304348 | 0.62260 | 0 | 4671 | 6502 | 71.83943 | 0.7062 | 0 | 2547 | 512 | 20.102081 | 0.74490 | 0 | 24 | 0.9422850 | 0.5880 | 0 | 384 | 2297 | 16.7174576 | 0.8552 | 1 | 514 | 2297 | 22.3770135 | 0.94220 | 1 | 52 | 6502 | 0.7997539 | 0.7682 | 1 | 4.013900 | 0.8673 | 4 | 3.552550 | 0.92110 | 3 | 0.7062 | 0.6989 | 0 | 3.89850 | 0.9653 | 3 | 12.171150 | 0.9496 | 10 | 7641 | 2942 | 2510 | 3841 | 7418 | 51.77946 | 0.9712 | 1 | 278 | 2450 | 11.346939 | 0.9134 | 1 | 273 | 771 | 35.408560 | 0.73590 | 0 | 943 | 1739 | 54.22657 | 0.63530 | 0 | 1216 | 2510 | 48.44622 | 0.817700 | 1 | 562 | 4063 | 13.832144 | 0.62240 | 0 | 702 | 7423 | 9.457093 | 0.74250 | 0 | 614 | 8.0355974 | 0.13620 | 0 | 3131 | 40.97631 | 0.9967 | 1 | 994 | 4292.000 | 23.159366 | 0.926700 | 1 | 685 | 1527.00 | 44.859201 | 0.9910 | 1 | 222 | 6659 | 3.3338339 | 0.42160 | 0 | 5706 | 7641.000 | 74.67609 | 0.6868 | 0 | 2942 | 331 | 11.250850 | 0.5797 | 0 | 33 | 1.121686 | 0.6182 | 0 | 284 | 2510 | 11.3147410 | 0.76010 | 1 | 564 | 2510.000 | 22.470119 | 0.9540 | 1 | 204 | 7641 | 2.669808 | 0.8654 | 1 | 4.067200 | 0.8945 | 3 | 3.472200 | 0.91650 | 3 | 0.6868 | 0.6807 | 0 | 3.77740 | 0.9460 | 3 | 12.003600 | 0.9504 | 9 | Yes | 5 | 11493716 | \$11,493,716 |
# Join national data to nmtc_awards_pre2010, set count to 0 if no data
svi_national_nmtc_eligible <-
left_join(svi_national_nmtc_eligible, nmtc_awards_pre2010, join_by("GEOID_2010_trt" == "GEOID10")) %>%
mutate(pre10_nmtc_project_cnt = if_else(is.na(pre10_nmtc_project_cnt), 0, pre10_nmtc_project_cnt)) %>%
mutate(pre10_nmtc_dollars = if_else(is.na(pre10_nmtc_dollars), 0, pre10_nmtc_dollars))%>%
mutate(pre10_nmtc_dollars_formatted = if_else(is.na(pre10_nmtc_dollars_formatted), "$0", pre10_nmtc_dollars_formatted))
# View table
svi_national_nmtc_eligible %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | nmtc_eligibility | pre10_nmtc_project_cnt | pre10_nmtc_dollars | pre10_nmtc_dollars_formatted |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 01001020200 | 01 | 001 | 020200 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2020 | 816 | 730 | 495 | 1992 | 24.84940 | 0.5954 | 0 | 68 | 834 | 8.153477 | 0.57540 | 0 | 49 | 439 | 11.16173 | 0.02067 | 0 | 105 | 291 | 36.08247 | 0.30190 | 0 | 154 | 730 | 21.09589 | 0.09312 | 0 | 339 | 1265 | 26.79842 | 0.8392 | 1 | 313 | 2012 | 15.55666 | 0.6000 | 0 | 204 | 10.09901 | 0.3419 | 0 | 597 | 29.55446 | 0.8192 | 1 | 359 | 1515 | 23.69637 | 0.8791 | 1 | 132 | 456 | 28.947368 | 0.8351 | 1 | 15 | 1890 | 0.7936508 | 0.40130 | 0 | 1243 | 2020 | 61.53465 | 0.7781 | 1 | 816 | 0 | 0.0000000 | 0.1224 | 0 | 34 | 4.1666667 | 0.6664 | 0 | 13 | 730 | 1.780822 | 0.5406 | 0 | 115 | 730 | 15.753425 | 0.8382 | 1 | 0 | 2020 | 0.0000 | 0.3640 | 0 | 2.70312 | 0.5665 | 1 | 3.27660 | 0.8614 | 3 | 0.7781 | 0.7709 | 1 | 2.5316 | 0.5047 | 1 | 9.28942 | 0.6832 | 6 | 1757 | 720 | 573 | 384 | 1511 | 25.41363 | 0.6427 | 0 | 29 | 717 | 4.044630 | 0.4132 | 0 | 33 | 392 | 8.418367 | 0.03542 | 0 | 116 | 181 | 64.08840 | 0.9086 | 1 | 149 | 573 | 26.00349 | 0.40410 | 0 | 139 | 1313 | 10.58644 | 0.5601 | 0 | 91 | 1533 | 5.936073 | 0.4343 | 0 | 284 | 16.163916 | 0.5169 | 0 | 325 | 18.49744 | 0.2851 | 0 | 164 | 1208.000 | 13.57616 | 0.4127 | 0 | 42 | 359.0000 | 11.699164 | 0.3998 | 0 | 0 | 1651 | 0.0000000 | 0.09479 | 0 | 1116 | 1757.000 | 63.51736 | 0.7591 | 1 | 720 | 3 | 0.4166667 | 0.2470 | 0 | 5 | 0.6944444 | 0.5106 | 0 | 9 | 573 | 1.5706806 | 0.4688 | 0 | 57 | 573.000 | 9.947644 | 0.7317 | 0 | 212 | 1757 | 12.0660216 | 0.9549 | 1 | 2.45440 | 0.4888 | 0 | 1.70929 | 0.1025 | 0 | 0.7591 | 0.7527 | 1 | 2.9130 | 0.6862 | 1 | 7.83579 | 0.4802 | 2 | Yes | 0 | 0 | \$0 |
| 01001020700 | 01 | 001 | 020700 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2664 | 1254 | 1139 | 710 | 2664 | 26.65165 | 0.6328 | 0 | 29 | 1310 | 2.213741 | 0.05255 | 0 | 134 | 710 | 18.87324 | 0.13890 | 0 | 187 | 429 | 43.58974 | 0.47090 | 0 | 321 | 1139 | 28.18262 | 0.28130 | 0 | 396 | 1852 | 21.38229 | 0.7478 | 0 | 345 | 2878 | 11.98749 | 0.4459 | 0 | 389 | 14.60210 | 0.6417 | 0 | 599 | 22.48499 | 0.4007 | 0 | 510 | 2168 | 23.52399 | 0.8752 | 1 | 228 | 712 | 32.022472 | 0.8712 | 1 | 0 | 2480 | 0.0000000 | 0.09298 | 0 | 694 | 2664 | 26.05105 | 0.5138 | 0 | 1254 | 8 | 0.6379585 | 0.2931 | 0 | 460 | 36.6826156 | 0.9714 | 1 | 0 | 1139 | 0.000000 | 0.1238 | 0 | 125 | 1139 | 10.974539 | 0.7477 | 0 | 0 | 2664 | 0.0000 | 0.3640 | 0 | 2.16035 | 0.4069 | 0 | 2.88178 | 0.6997 | 2 | 0.5138 | 0.5090 | 0 | 2.5000 | 0.4882 | 1 | 8.05593 | 0.5185 | 3 | 3562 | 1313 | 1248 | 1370 | 3528 | 38.83220 | 0.8512 | 1 | 128 | 1562 | 8.194622 | 0.7935 | 1 | 168 | 844 | 19.905213 | 0.44510 | 0 | 237 | 404 | 58.66337 | 0.8359 | 1 | 405 | 1248 | 32.45192 | 0.60420 | 0 | 396 | 2211 | 17.91045 | 0.7857 | 1 | 444 | 3547 | 12.517620 | 0.7758 | 1 | 355 | 9.966311 | 0.1800 | 0 | 954 | 26.78271 | 0.7923 | 1 | 629 | 2593.000 | 24.25762 | 0.8730 | 1 | 171 | 797.0000 | 21.455458 | 0.7186 | 0 | 0 | 3211 | 0.0000000 | 0.09479 | 0 | 1009 | 3562.000 | 28.32678 | 0.4668 | 0 | 1313 | 14 | 1.0662605 | 0.3165 | 0 | 443 | 33.7395278 | 0.9663 | 1 | 73 | 1248 | 5.8493590 | 0.8211 | 1 | 17 | 1248.000 | 1.362180 | 0.1554 | 0 | 112 | 3562 | 3.1443010 | 0.8514 | 1 | 3.81040 | 0.8569 | 4 | 2.65869 | 0.5847 | 2 | 0.4668 | 0.4629 | 0 | 3.1107 | 0.7714 | 3 | 10.04659 | 0.7851 | 9 | Yes | 0 | 0 | \$0 |
| 01001021100 | 01 | 001 | 021100 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3298 | 1502 | 1323 | 860 | 3298 | 26.07641 | 0.6211 | 0 | 297 | 1605 | 18.504673 | 0.94340 | 1 | 250 | 1016 | 24.60630 | 0.32070 | 0 | 74 | 307 | 24.10423 | 0.11920 | 0 | 324 | 1323 | 24.48980 | 0.17380 | 0 | 710 | 2231 | 31.82429 | 0.8976 | 1 | 654 | 3565 | 18.34502 | 0.7018 | 0 | 411 | 12.46210 | 0.5001 | 0 | 738 | 22.37720 | 0.3934 | 0 | 936 | 2861 | 32.71583 | 0.9807 | 1 | 138 | 825 | 16.727273 | 0.5715 | 0 | 9 | 3155 | 0.2852615 | 0.25010 | 0 | 1979 | 3298 | 60.00606 | 0.7703 | 1 | 1502 | 14 | 0.9320905 | 0.3234 | 0 | 659 | 43.8748336 | 0.9849 | 1 | 44 | 1323 | 3.325775 | 0.7062 | 0 | 137 | 1323 | 10.355253 | 0.7313 | 0 | 0 | 3298 | 0.0000 | 0.3640 | 0 | 3.33770 | 0.7351 | 2 | 2.69580 | 0.6028 | 1 | 0.7703 | 0.7631 | 1 | 3.1098 | 0.7827 | 1 | 9.91360 | 0.7557 | 5 | 3499 | 1825 | 1462 | 1760 | 3499 | 50.30009 | 0.9396 | 1 | 42 | 966 | 4.347826 | 0.4539 | 0 | 426 | 1274 | 33.437991 | 0.85200 | 1 | 52 | 188 | 27.65957 | 0.1824 | 0 | 478 | 1462 | 32.69494 | 0.61110 | 0 | 422 | 2488 | 16.96141 | 0.7638 | 1 | 497 | 3499 | 14.204058 | 0.8246 | 1 | 853 | 24.378394 | 0.8688 | 1 | 808 | 23.09231 | 0.5829 | 0 | 908 | 2691.100 | 33.74084 | 0.9808 | 1 | 179 | 811.6985 | 22.052524 | 0.7323 | 0 | 8 | 3248 | 0.2463054 | 0.26220 | 0 | 1986 | 3498.713 | 56.76373 | 0.7175 | 0 | 1825 | 29 | 1.5890411 | 0.3551 | 0 | 576 | 31.5616438 | 0.9594 | 1 | 88 | 1462 | 6.0191518 | 0.8269 | 1 | 148 | 1461.993 | 10.123166 | 0.7364 | 0 | 38 | 3499 | 1.0860246 | 0.7013 | 0 | 3.59300 | 0.8073 | 3 | 3.42700 | 0.9156 | 2 | 0.7175 | 0.7114 | 0 | 3.5791 | 0.9216 | 2 | 11.31660 | 0.9150 | 7 | Yes | 0 | 0 | \$0 |
| 01003010200 | 01 | 003 | 010200 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 2612 | 1220 | 1074 | 338 | 2605 | 12.97505 | 0.2907 | 0 | 44 | 1193 | 3.688181 | 0.14720 | 0 | 172 | 928 | 18.53448 | 0.13090 | 0 | 31 | 146 | 21.23288 | 0.09299 | 0 | 203 | 1074 | 18.90130 | 0.05657 | 0 | 455 | 1872 | 24.30556 | 0.8016 | 1 | 456 | 2730 | 16.70330 | 0.6445 | 0 | 401 | 15.35222 | 0.6847 | 0 | 563 | 21.55436 | 0.3406 | 0 | 410 | 2038 | 20.11776 | 0.7755 | 1 | 64 | 779 | 8.215661 | 0.2181 | 0 | 0 | 2510 | 0.0000000 | 0.09298 | 0 | 329 | 2612 | 12.59571 | 0.3113 | 0 | 1220 | 38 | 3.1147541 | 0.4648 | 0 | 385 | 31.5573770 | 0.9545 | 1 | 20 | 1074 | 1.862197 | 0.5509 | 0 | 43 | 1074 | 4.003724 | 0.4088 | 0 | 0 | 2612 | 0.0000 | 0.3640 | 0 | 1.94057 | 0.3398 | 1 | 2.11188 | 0.2802 | 1 | 0.3113 | 0.3084 | 0 | 2.7430 | 0.6129 | 1 | 7.10675 | 0.3771 | 3 | 2928 | 1312 | 1176 | 884 | 2928 | 30.19126 | 0.7334 | 0 | 29 | 1459 | 1.987663 | 0.1356 | 0 | 71 | 830 | 8.554217 | 0.03726 | 0 | 134 | 346 | 38.72832 | 0.3964 | 0 | 205 | 1176 | 17.43197 | 0.12010 | 0 | 294 | 2052 | 14.32749 | 0.6940 | 0 | 219 | 2925 | 7.487179 | 0.5423 | 0 | 556 | 18.989071 | 0.6705 | 0 | 699 | 23.87295 | 0.6339 | 0 | 489 | 2226.455 | 21.96317 | 0.8122 | 1 | 191 | 783.8820 | 24.365914 | 0.7799 | 1 | 0 | 2710 | 0.0000000 | 0.09479 | 0 | 398 | 2927.519 | 13.59513 | 0.2511 | 0 | 1312 | 13 | 0.9908537 | 0.3111 | 0 | 400 | 30.4878049 | 0.9557 | 1 | 6 | 1176 | 0.5102041 | 0.2590 | 0 | 81 | 1176.202 | 6.886570 | 0.6115 | 0 | 7 | 2928 | 0.2390710 | 0.4961 | 0 | 2.22540 | 0.4183 | 0 | 2.99129 | 0.7634 | 2 | 0.2511 | 0.2490 | 0 | 2.6334 | 0.5496 | 1 | 8.10119 | 0.5207 | 3 | Yes | 0 | 0 | \$0 |
| 01003010500 | 01 | 003 | 010500 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 4230 | 1779 | 1425 | 498 | 3443 | 14.46413 | 0.3337 | 0 | 166 | 1625 | 10.215385 | 0.71790 | 0 | 151 | 1069 | 14.12535 | 0.04638 | 0 | 196 | 356 | 55.05618 | 0.73830 | 0 | 347 | 1425 | 24.35088 | 0.17010 | 0 | 707 | 2945 | 24.00679 | 0.7967 | 1 | 528 | 4001 | 13.19670 | 0.5005 | 0 | 619 | 14.63357 | 0.6436 | 0 | 790 | 18.67612 | 0.1937 | 0 | 536 | 3096 | 17.31266 | 0.6572 | 0 | 165 | 920 | 17.934783 | 0.6102 | 0 | 20 | 4021 | 0.4973887 | 0.32320 | 0 | 754 | 4230 | 17.82506 | 0.4023 | 0 | 1779 | 97 | 5.4525014 | 0.5525 | 0 | 8 | 0.4496908 | 0.4600 | 0 | 63 | 1425 | 4.421053 | 0.7762 | 1 | 90 | 1425 | 6.315790 | 0.5691 | 0 | 787 | 4230 | 18.6052 | 0.9649 | 1 | 2.51890 | 0.5121 | 1 | 2.42790 | 0.4539 | 0 | 0.4023 | 0.3986 | 0 | 3.3227 | 0.8628 | 2 | 8.67180 | 0.6054 | 3 | 5877 | 1975 | 1836 | 820 | 5244 | 15.63692 | 0.3902 | 0 | 90 | 2583 | 3.484321 | 0.3361 | 0 | 159 | 1345 | 11.821561 | 0.10530 | 0 | 139 | 491 | 28.30957 | 0.1924 | 0 | 298 | 1836 | 16.23094 | 0.09053 | 0 | 570 | 4248 | 13.41808 | 0.6669 | 0 | 353 | 5247 | 6.727654 | 0.4924 | 0 | 1109 | 18.870172 | 0.6645 | 0 | 1144 | 19.46571 | 0.3411 | 0 | 717 | 4102.545 | 17.47696 | 0.6332 | 0 | 103 | 1286.1180 | 8.008596 | 0.2341 | 0 | 0 | 5639 | 0.0000000 | 0.09479 | 0 | 868 | 5877.481 | 14.76823 | 0.2709 | 0 | 1975 | 26 | 1.3164557 | 0.3359 | 0 | 45 | 2.2784810 | 0.6271 | 0 | 9 | 1836 | 0.4901961 | 0.2540 | 0 | 116 | 1835.798 | 6.318779 | 0.5811 | 0 | 633 | 5877 | 10.7708014 | 0.9507 | 1 | 1.97613 | 0.3410 | 0 | 1.96769 | 0.1961 | 0 | 0.2709 | 0.2686 | 0 | 2.7488 | 0.6077 | 1 | 6.96352 | 0.3406 | 1 | Yes | 0 | 0 | \$0 |
| 01003010600 | 01 | 003 | 010600 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 3724 | 1440 | 1147 | 1973 | 3724 | 52.98067 | 0.9342 | 1 | 142 | 1439 | 9.867964 | 0.69680 | 0 | 235 | 688 | 34.15698 | 0.62950 | 0 | 187 | 459 | 40.74074 | 0.40290 | 0 | 422 | 1147 | 36.79163 | 0.55150 | 0 | 497 | 1876 | 26.49254 | 0.8354 | 1 | 511 | 3661 | 13.95794 | 0.5334 | 0 | 246 | 6.60580 | 0.1481 | 0 | 1256 | 33.72718 | 0.9305 | 1 | 496 | 2522 | 19.66693 | 0.7587 | 1 | 274 | 838 | 32.696897 | 0.8779 | 1 | 32 | 3479 | 0.9198045 | 0.42810 | 0 | 2606 | 3724 | 69.97852 | 0.8184 | 1 | 1440 | 21 | 1.4583333 | 0.3683 | 0 | 321 | 22.2916667 | 0.9036 | 1 | 97 | 1147 | 8.456844 | 0.8956 | 1 | 167 | 1147 | 14.559721 | 0.8209 | 1 | 0 | 3724 | 0.0000 | 0.3640 | 0 | 3.55130 | 0.7859 | 2 | 3.14330 | 0.8145 | 3 | 0.8184 | 0.8108 | 1 | 3.3524 | 0.8725 | 3 | 10.86540 | 0.8550 | 9 | 4115 | 1534 | 1268 | 1676 | 3997 | 41.93145 | 0.8814 | 1 | 294 | 1809 | 16.252073 | 0.9674 | 1 | 341 | 814 | 41.891892 | 0.94320 | 1 | 204 | 454 | 44.93392 | 0.5438 | 0 | 545 | 1268 | 42.98107 | 0.83620 | 1 | 624 | 2425 | 25.73196 | 0.9002 | 1 | 994 | 4115 | 24.155529 | 0.9602 | 1 | 642 | 15.601458 | 0.4841 | 0 | 1126 | 27.36331 | 0.8175 | 1 | 568 | 2989.000 | 19.00301 | 0.7045 | 0 | 212 | 715.0000 | 29.650350 | 0.8592 | 1 | 56 | 3825 | 1.4640523 | 0.53120 | 0 | 2715 | 4115.000 | 65.97813 | 0.7732 | 1 | 1534 | 0 | 0.0000000 | 0.1079 | 0 | 529 | 34.4850065 | 0.9685 | 1 | 101 | 1268 | 7.9652997 | 0.8795 | 1 | 89 | 1268.000 | 7.018927 | 0.6184 | 0 | 17 | 4115 | 0.4131227 | 0.5707 | 0 | 4.54540 | 0.9754 | 5 | 3.39650 | 0.9081 | 2 | 0.7732 | 0.7667 | 1 | 3.1450 | 0.7858 | 2 | 11.86010 | 0.9520 | 10 | Yes | 0 | 0 | \$0 |
# See number of rows
svi_divisional_nmtc_eligible %>% nrow()
## [1] 4563
# See number of rows
svi_national_nmtc_eligible %>% nrow()
## [1] 30847
# Find count of NMTC projects after 2010
# Remove all tracts that do not have SVI flag counts for 2010
# Remove all tracts that do not have SVI flag counts for 2020
# Remove all tracts that had an NMTC project before 2010
svi_divisional_nmtc <-
left_join(svi_divisional_nmtc_eligible, nmtc_awards_post2010, join_by("GEOID_2010_trt" == "GEOID10")) %>%
mutate(post10_nmtc_project_cnt = if_else(is.na(post10_nmtc_project_cnt), 0, post10_nmtc_project_cnt)) %>%
mutate(post10_nmtc_dollars = if_else(is.na(post10_nmtc_dollars), 0, post10_nmtc_dollars))%>%
mutate(post10_nmtc_dollars_formatted = if_else(is.na(post10_nmtc_dollars_formatted), "$0", post10_nmtc_dollars_formatted)) %>%
mutate(nmtc_flag = if_else(post10_nmtc_project_cnt > 0, 1, 0)) %>%
filter(!is.na(F_TOTAL_10)) %>%
filter(!is.na(F_TOTAL_20)) %>%
filter(pre10_nmtc_project_cnt < 1)
svi_divisional_nmtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | nmtc_eligibility | pre10_nmtc_project_cnt | pre10_nmtc_dollars | pre10_nmtc_dollars_formatted | post10_nmtc_project_cnt | post10_nmtc_dollars | post10_nmtc_dollars_formatted | nmtc_flag |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 02013000100 | 02 | 013 | 000100 | AK | Alaska | Aleutians East Borough | 4 | West Region | 9 | Pacific Division | 3703 | 474 | 267 | 1212 | 3695 | 32.80108 | 0.7570 | 1 | 111 | 3163 | 3.509327 | 0.08691 | 0 | 25 | 158 | 15.82278 | 0.01337 | 0 | 17 | 109 | 15.59633 | 0.02605 | 0 | 42 | 267 | 15.73034 | 0.004754 | 0 | 1082 | 3017 | 35.863441 | 0.85420 | 1 | 2060 | 3112 | 66.195373 | 0.99990 | 1 | 127 | 3.429652 | 0.042400 | 0 | 315 | 8.506616 | 0.03961 | 0 | 182 | 2849 | 6.388206 | 0.077750 | 0 | 50 | 165 | 30.30303 | 0.8835 | 1 | 1070 | 3617 | 29.5825270 | 0.93700 | 1 | 3492 | 3703 | 94.30192 | 0.9141 | 1 | 474 | 8 | 1.687764 | 0.29250 | 0 | 42 | 8.8607595 | 0.8128 | 1 | 7 | 267 | 2.6217228 | 0.4003 | 0 | 77 | 267 | 28.8389513 | 0.96850 | 1 | 2969 | 3703 | 80.178234 | 0.9940 | 1 | 2.702764 | 0.5611 | 3 | 1.980260 | 0.23800 | 2 | 0.9141 | 0.9047 | 1 | 3.46810 | 0.8902 | 3 | 9.065224 | 0.6397 | 9 | 3389 | 1199 | 988 | 698 | 3379 | 20.65700 | 0.5925 | 0 | 86 | 2414 | 3.562552 | 0.2665 | 0 | 67 | 607 | 11.037891 | 0.01803 | 0 | 74 | 381 | 19.42257 | 0.04067 | 0 | 141 | 988 | 14.27126 | 0.006988 | 0 | 354 | 2646 | 13.378685 | 0.61070 | 0 | 1345 | 3384 | 39.745863 | 0.99970 | 1 | 381 | 11.2422544 | 0.31390 | 0 | 443 | 13.07170 | 0.0988 | 0 | 339 | 2941.000 | 11.526692 | 0.386000 | 0 | 135 | 593.00 | 22.765599 | 0.7920 | 1 | 334 | 3276 | 10.1953602 | 0.72620 | 0 | 2939 | 3389.000 | 86.72175 | 0.8110 | 1 | 1199 | 38 | 3.169308 | 0.3474 | 0 | 69 | 5.754796 | 0.7806 | 1 | 30 | 988 | 3.0364372 | 0.36010 | 0 | 220 | 988.000 | 22.267207 | 0.9527 | 1 | 1035 | 3389 | 30.539982 | 0.9843 | 1 | 2.476388 | 0.4947 | 1 | 2.316900 | 0.37850 | 1 | 0.8110 | 0.8038 | 1 | 3.42510 | 0.8683 | 3 | 9.029388 | 0.6419 | 6 | Yes | 0 | 0 | \$0 | 1 | 15762500 | \$15,762,500 | 1 |
| 02016000100 | 02 | 016 | 000100 | AK | Alaska | Aleutians West Census Area | 4 | West Region | 9 | Pacific Division | 1774 | 1056 | 166 | 328 | 1231 | 26.64500 | 0.6553 | 0 | 15 | 1370 | 1.094890 | 0.01369 | 0 | 25 | 95 | 26.31579 | 0.09653 | 0 | 16 | 71 | 22.53521 | 0.05099 | 0 | 41 | 166 | 24.69880 | 0.029080 | 0 | 207 | 1330 | 15.563910 | 0.58390 | 0 | 484 | 973 | 49.743063 | 0.99520 | 1 | 53 | 2.987599 | 0.031800 | 0 | 182 | 10.259301 | 0.05188 | 0 | 147 | 747 | 19.678715 | 0.864200 | 1 | 19 | 96 | 19.79167 | 0.6606 | 0 | 79 | 1718 | 4.5983702 | 0.46890 | 0 | 1154 | 1774 | 65.05073 | 0.6522 | 0 | 1056 | 22 | 2.083333 | 0.31610 | 0 | 0 | 0.0000000 | 0.2497 | 0 | 10 | 166 | 6.0240964 | 0.6154 | 0 | 84 | 166 | 50.6024096 | 0.99320 | 1 | 1324 | 1774 | 74.633596 | 0.9935 | 1 | 2.277170 | 0.4443 | 1 | 2.077380 | 0.27780 | 1 | 0.6522 | 0.6454 | 0 | 3.16790 | 0.7874 | 2 | 8.174650 | 0.5311 | 4 | 950 | 694 | 199 | 218 | 719 | 30.31989 | 0.7848 | 1 | 15 | 560 | 2.678571 | 0.1560 | 0 | 11 | 117 | 9.401709 | 0.01305 | 0 | 14 | 82 | 17.07317 | 0.03088 | 0 | 25 | 199 | 12.56281 | 0.003541 | 0 | 48 | 681 | 7.048458 | 0.37250 | 0 | 238 | 721 | 33.009709 | 0.99890 | 1 | 116 | 12.2105263 | 0.37310 | 0 | 195 | 20.52632 | 0.4153 | 0 | 113 | 526.000 | 21.482890 | 0.893100 | 1 | 31 | 98.00 | 31.632653 | 0.9318 | 1 | 17 | 900 | 1.8888889 | 0.29830 | 0 | 713 | 950.000 | 75.05263 | 0.6900 | 0 | 694 | 17 | 2.449568 | 0.3163 | 0 | 0 | 0.000000 | 0.2466 | 0 | 7 | 199 | 3.5175879 | 0.39980 | 0 | 68 | 199.000 | 34.170854 | 0.9826 | 1 | 274 | 950 | 28.842105 | 0.9832 | 1 | 2.315741 | 0.4476 | 2 | 2.911600 | 0.70420 | 2 | 0.6900 | 0.6839 | 0 | 2.92850 | 0.6794 | 2 | 8.845841 | 0.6188 | 6 | Yes | 0 | 0 | \$0 | 0 | 0 | \$0 | 0 |
| 02020000300 | 02 | 020 | 000300 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 6308 | 1834 | 1707 | 1137 | 5839 | 19.47251 | 0.4988 | 0 | 59 | 1024 | 5.761719 | 0.26830 | 0 | 11 | 11 | 100.00000 | 0.99780 | 1 | 609 | 1696 | 35.90802 | 0.17490 | 0 | 620 | 1707 | 36.32103 | 0.215100 | 0 | 85 | 2458 | 3.458096 | 0.12670 | 0 | 125 | 4961 | 2.519653 | 0.02643 | 0 | 0 | 0.000000 | 0.003301 | 0 | 2744 | 43.500317 | 0.99640 | 1 | 54 | 2007 | 2.690583 | 0.007821 | 0 | 301 | 1635 | 18.40979 | 0.6168 | 0 | 11 | 5308 | 0.2072344 | 0.06620 | 0 | 2167 | 6308 | 34.35320 | 0.3715 | 0 | 1834 | 24 | 1.308615 | 0.27080 | 0 | 0 | 0.0000000 | 0.2497 | 0 | 10 | 1707 | 0.5858231 | 0.1573 | 0 | 10 | 1707 | 0.5858231 | 0.07765 | 0 | 469 | 6308 | 7.435003 | 0.9359 | 1 | 1.135330 | 0.1355 | 0 | 1.690522 | 0.13070 | 1 | 0.3715 | 0.3677 | 0 | 1.69135 | 0.1520 | 1 | 4.888702 | 0.1113 | 2 | 8256 | 1834 | 1731 | 1603 | 6583 | 24.35060 | 0.6772 | 0 | 95 | 1105 | 8.597285 | 0.8029 | 1 | 7 | 16 | 43.750000 | 0.91050 | 1 | 1127 | 1715 | 65.71429 | 0.88900 | 1 | 1134 | 1731 | 65.51127 | 0.985700 | 1 | 148 | 3181 | 4.652625 | 0.23830 | 0 | 80 | 5243 | 1.525844 | 0.08775 | 0 | 119 | 1.4413760 | 0.00975 | 0 | 3086 | 37.37888 | 0.9880 | 1 | 193 | 2171.088 | 8.889551 | 0.188800 | 0 | 136 | 1429.97 | 9.510687 | 0.3216 | 0 | 0 | 7040 | 0.0000000 | 0.02391 | 0 | 3808 | 8256.294 | 46.12239 | 0.4209 | 0 | 1834 | 127 | 6.924755 | 0.4701 | 0 | 0 | 0.000000 | 0.2466 | 0 | 13 | 1731 | 0.7510110 | 0.12710 | 0 | 179 | 1731.395 | 10.338487 | 0.7913 | 1 | 1673 | 8256 | 20.264050 | 0.9768 | 1 | 2.791850 | 0.5891 | 2 | 1.532060 | 0.07776 | 1 | 0.4209 | 0.4172 | 0 | 2.61190 | 0.5330 | 2 | 7.356710 | 0.4139 | 5 | Yes | 0 | 0 | \$0 | 0 | 0 | \$0 | 0 |
| 02020000400 | 02 | 020 | 000400 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 5991 | 1360 | 1246 | 628 | 4602 | 13.64624 | 0.3404 | 0 | 117 | 924 | 12.662338 | 0.81630 | 1 | 0 | 12 | 0.00000 | 0.00240 | 0 | 761 | 1234 | 61.66937 | 0.78730 | 1 | 761 | 1246 | 61.07544 | 0.929600 | 1 | 24 | 1995 | 1.203008 | 0.03078 | 0 | 55 | 4075 | 1.349693 | 0.01061 | 0 | 0 | 0.000000 | 0.003301 | 0 | 2117 | 35.336338 | 0.93430 | 1 | 86 | 1820 | 4.725275 | 0.029420 | 0 | 138 | 1246 | 11.07544 | 0.3314 | 0 | 14 | 5099 | 0.2745636 | 0.07606 | 0 | 1539 | 5991 | 25.68853 | 0.2688 | 0 | 1360 | 0 | 0.000000 | 0.09395 | 0 | 10 | 0.7352941 | 0.5653 | 0 | 38 | 1246 | 3.0497592 | 0.4365 | 0 | 21 | 1246 | 1.6853933 | 0.19700 | 0 | 1389 | 5991 | 23.184777 | 0.9762 | 1 | 2.127690 | 0.4021 | 2 | 1.374481 | 0.05613 | 1 | 0.2688 | 0.2660 | 0 | 2.26895 | 0.3836 | 1 | 6.039921 | 0.2480 | 4 | 5090 | 1440 | 1377 | 657 | 4243 | 15.48433 | 0.4416 | 0 | 82 | 1435 | 5.714286 | 0.5455 | 0 | 0 | 0 | NaN | NA | NA | 912 | 1377 | 66.23094 | 0.89700 | 1 | 912 | 1377 | 66.23094 | 0.987300 | 1 | 28 | 1928 | 1.452282 | 0.05471 | 0 | 82 | 3349 | 2.448492 | 0.16300 | 0 | 12 | 0.2357564 | 0.00585 | 0 | 1446 | 28.40864 | 0.8460 | 1 | 68 | 1902.717 | 3.573837 | 0.008563 | 0 | 56 | 1032.00 | 5.426357 | 0.1342 | 0 | 9 | 4411 | 0.2040354 | 0.06983 | 0 | 2444 | 5089.955 | 48.01614 | 0.4425 | 0 | 1440 | 38 | 2.638889 | 0.3255 | 0 | 0 | 0.000000 | 0.2466 | 0 | 7 | 1377 | 0.5083515 | 0.09514 | 0 | 92 | 1377.000 | 6.681191 | 0.6436 | 0 | 820 | 5090 | 16.110020 | 0.9730 | 1 | 2.192110 | 0.4140 | 1 | 1.064443 | 0.02264 | 1 | 0.4425 | 0.4386 | 0 | 2.28384 | 0.3878 | 1 | 5.982893 | 0.2198 | 3 | Yes | 0 | 0 | \$0 | 0 | 0 | \$0 | 0 |
| 02020000500 | 02 | 020 | 000500 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 1872 | 979 | 956 | 384 | 1872 | 20.51282 | 0.5238 | 0 | 30 | 957 | 3.134796 | 0.06633 | 0 | 56 | 149 | 37.58389 | 0.39630 | 0 | 321 | 807 | 39.77695 | 0.23920 | 0 | 377 | 956 | 39.43515 | 0.311800 | 0 | 190 | 1139 | 16.681299 | 0.60890 | 0 | 314 | 2109 | 14.888573 | 0.48950 | 0 | 221 | 11.805556 | 0.574800 | 0 | 434 | 23.183761 | 0.43040 | 0 | 307 | 1475 | 20.813559 | 0.894900 | 1 | 91 | 385 | 23.63636 | 0.7603 | 1 | 129 | 1793 | 7.1946458 | 0.58420 | 0 | 1048 | 1872 | 55.98291 | 0.5787 | 0 | 979 | 578 | 59.039837 | 0.95260 | 1 | 0 | 0.0000000 | 0.2497 | 0 | 22 | 956 | 2.3012552 | 0.3729 | 0 | 78 | 956 | 8.1589958 | 0.68640 | 0 | 0 | 1872 | 0.000000 | 0.3743 | 0 | 2.000330 | 0.3676 | 0 | 3.244600 | 0.82880 | 2 | 0.5787 | 0.5727 | 0 | 2.63590 | 0.5502 | 1 | 8.459530 | 0.5669 | 3 | 2039 | 1074 | 985 | 624 | 2039 | 30.60324 | 0.7906 | 1 | 119 | 1125 | 10.577778 | 0.8901 | 1 | 42 | 138 | 30.434783 | 0.56020 | 0 | 361 | 847 | 42.62102 | 0.32940 | 0 | 403 | 985 | 40.91371 | 0.614800 | 0 | 61 | 1468 | 4.155313 | 0.20970 | 0 | 350 | 1966 | 17.802645 | 0.95510 | 1 | 200 | 9.8087298 | 0.22920 | 0 | 322 | 15.79205 | 0.1707 | 0 | 233 | 1644.283 | 14.170309 | 0.581400 | 0 | 143 | 338.00 | 42.307692 | 0.9859 | 1 | 48 | 1920 | 2.5000000 | 0.35480 | 0 | 1060 | 2039.045 | 51.98512 | 0.4840 | 0 | 1074 | 642 | 59.776536 | 0.9485 | 1 | 0 | 0.000000 | 0.2466 | 0 | 39 | 985 | 3.9593909 | 0.43720 | 0 | 230 | 985.000 | 23.350254 | 0.9573 | 1 | 0 | 2039 | 0.000000 | 0.1370 | 0 | 3.460300 | 0.7607 | 3 | 2.322000 | 0.38140 | 1 | 0.4840 | 0.4797 | 0 | 2.72660 | 0.5866 | 2 | 8.992900 | 0.6375 | 6 | Yes | 0 | 0 | \$0 | 0 | 0 | \$0 | 0 |
| 02020000701 | 02 | 020 | 000701 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 5432 | 2076 | 1969 | 1206 | 5418 | 22.25914 | 0.5643 | 0 | 264 | 2765 | 9.547920 | 0.62650 | 0 | 354 | 1051 | 33.68221 | 0.26640 | 0 | 362 | 918 | 39.43355 | 0.23330 | 0 | 716 | 1969 | 36.36364 | 0.216100 | 0 | 411 | 3280 | 12.530488 | 0.50270 | 0 | 1108 | 5795 | 19.119931 | 0.64920 | 0 | 354 | 6.516937 | 0.200300 | 0 | 1479 | 27.227540 | 0.65230 | 0 | 567 | 4056 | 13.979290 | 0.607400 | 0 | 415 | 1255 | 33.06773 | 0.9178 | 1 | 73 | 4960 | 1.4717742 | 0.22780 | 0 | 3080 | 5432 | 56.70103 | 0.5848 | 0 | 2076 | 273 | 13.150289 | 0.63880 | 0 | 335 | 16.1368015 | 0.8980 | 1 | 166 | 1969 | 8.4306755 | 0.7014 | 0 | 202 | 1969 | 10.2590147 | 0.76450 | 1 | 0 | 5432 | 0.000000 | 0.3743 | 0 | 2.558800 | 0.5224 | 0 | 2.605600 | 0.53860 | 1 | 0.5848 | 0.5788 | 0 | 3.37700 | 0.8627 | 2 | 9.126200 | 0.6476 | 3 | 6784 | 2585 | 2265 | 1300 | 6719 | 19.34812 | 0.5567 | 0 | 196 | 3597 | 5.448985 | 0.5123 | 0 | 356 | 1275 | 27.921569 | 0.45790 | 0 | 443 | 990 | 44.74747 | 0.37870 | 0 | 799 | 2265 | 35.27594 | 0.419800 | 0 | 363 | 3964 | 9.157417 | 0.46990 | 0 | 651 | 6607 | 9.853186 | 0.76060 | 1 | 437 | 6.4416274 | 0.06927 | 0 | 2252 | 33.19575 | 0.9548 | 1 | 945 | 4355.000 | 21.699196 | 0.897900 | 1 | 179 | 1612.00 | 11.104218 | 0.3936 | 0 | 481 | 6172 | 7.7932599 | 0.65010 | 0 | 4356 | 6784.000 | 64.20991 | 0.5963 | 0 | 2585 | 356 | 13.771760 | 0.6278 | 0 | 424 | 16.402321 | 0.9130 | 1 | 195 | 2265 | 8.6092715 | 0.68030 | 0 | 250 | 2265.000 | 11.037528 | 0.8145 | 1 | 7 | 6784 | 0.103184 | 0.3090 | 0 | 2.719300 | 0.5684 | 1 | 2.965670 | 0.73150 | 2 | 0.5963 | 0.5911 | 0 | 3.34460 | 0.8443 | 2 | 9.625870 | 0.7156 | 5 | Yes | 0 | 0 | \$0 | 0 | 0 | \$0 | 0 |
# Find count of NMTC projects after 2010
# Remove all tracts that do not have SVI flag counts for 2010
# Remove all tracts that do not have SVI flag counts for 2020
# Remove all tracts that had an NMTC project before 2010
svi_national_nmtc <-
left_join(svi_national_nmtc_eligible, nmtc_awards_post2010, join_by("GEOID_2010_trt" == "GEOID10")) %>%
mutate(post10_nmtc_project_cnt = if_else(is.na(post10_nmtc_project_cnt), 0, post10_nmtc_project_cnt)) %>%
mutate(post10_nmtc_dollars = if_else(is.na(post10_nmtc_dollars), 0, post10_nmtc_dollars))%>%
mutate(post10_nmtc_dollars_formatted = if_else(is.na(post10_nmtc_dollars_formatted), "$0", post10_nmtc_dollars_formatted)) %>%
mutate(nmtc_flag = if_else(post10_nmtc_project_cnt > 0, 1, 0)) %>%
filter(!is.na(F_TOTAL_10)) %>%
filter(!is.na(F_TOTAL_20)) %>%
filter(pre10_nmtc_project_cnt < 1)
svi_national_nmtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | nmtc_eligibility | pre10_nmtc_project_cnt | pre10_nmtc_dollars | pre10_nmtc_dollars_formatted | post10_nmtc_project_cnt | post10_nmtc_dollars | post10_nmtc_dollars_formatted | nmtc_flag |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 01001020200 | 01 | 001 | 020200 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2020 | 816 | 730 | 495 | 1992 | 24.84940 | 0.5954 | 0 | 68 | 834 | 8.153477 | 0.57540 | 0 | 49 | 439 | 11.16173 | 0.02067 | 0 | 105 | 291 | 36.08247 | 0.30190 | 0 | 154 | 730 | 21.09589 | 0.09312 | 0 | 339 | 1265 | 26.79842 | 0.8392 | 1 | 313 | 2012 | 15.55666 | 0.6000 | 0 | 204 | 10.09901 | 0.3419 | 0 | 597 | 29.55446 | 0.8192 | 1 | 359 | 1515 | 23.69637 | 0.8791 | 1 | 132 | 456 | 28.947368 | 0.8351 | 1 | 15 | 1890 | 0.7936508 | 0.40130 | 0 | 1243 | 2020 | 61.53465 | 0.7781 | 1 | 816 | 0 | 0.0000000 | 0.1224 | 0 | 34 | 4.1666667 | 0.6664 | 0 | 13 | 730 | 1.780822 | 0.5406 | 0 | 115 | 730 | 15.753425 | 0.8382 | 1 | 0 | 2020 | 0.0000 | 0.3640 | 0 | 2.70312 | 0.5665 | 1 | 3.27660 | 0.8614 | 3 | 0.7781 | 0.7709 | 1 | 2.5316 | 0.5047 | 1 | 9.28942 | 0.6832 | 6 | 1757 | 720 | 573 | 384 | 1511 | 25.41363 | 0.6427 | 0 | 29 | 717 | 4.044630 | 0.4132 | 0 | 33 | 392 | 8.418367 | 0.03542 | 0 | 116 | 181 | 64.08840 | 0.9086 | 1 | 149 | 573 | 26.00349 | 0.40410 | 0 | 139 | 1313 | 10.58644 | 0.5601 | 0 | 91 | 1533 | 5.936073 | 0.4343 | 0 | 284 | 16.163916 | 0.5169 | 0 | 325 | 18.49744 | 0.2851 | 0 | 164 | 1208.000 | 13.57616 | 0.4127 | 0 | 42 | 359.0000 | 11.699164 | 0.3998 | 0 | 0 | 1651 | 0.0000000 | 0.09479 | 0 | 1116 | 1757.000 | 63.51736 | 0.7591 | 1 | 720 | 3 | 0.4166667 | 0.2470 | 0 | 5 | 0.6944444 | 0.5106 | 0 | 9 | 573 | 1.5706806 | 0.4688 | 0 | 57 | 573.000 | 9.947644 | 0.7317 | 0 | 212 | 1757 | 12.0660216 | 0.9549 | 1 | 2.45440 | 0.4888 | 0 | 1.70929 | 0.1025 | 0 | 0.7591 | 0.7527 | 1 | 2.9130 | 0.6862 | 1 | 7.83579 | 0.4802 | 2 | Yes | 0 | 0 | \$0 | 0 | 0 | \$0 | 0 |
| 01001020700 | 01 | 001 | 020700 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2664 | 1254 | 1139 | 710 | 2664 | 26.65165 | 0.6328 | 0 | 29 | 1310 | 2.213741 | 0.05255 | 0 | 134 | 710 | 18.87324 | 0.13890 | 0 | 187 | 429 | 43.58974 | 0.47090 | 0 | 321 | 1139 | 28.18262 | 0.28130 | 0 | 396 | 1852 | 21.38229 | 0.7478 | 0 | 345 | 2878 | 11.98749 | 0.4459 | 0 | 389 | 14.60210 | 0.6417 | 0 | 599 | 22.48499 | 0.4007 | 0 | 510 | 2168 | 23.52399 | 0.8752 | 1 | 228 | 712 | 32.022472 | 0.8712 | 1 | 0 | 2480 | 0.0000000 | 0.09298 | 0 | 694 | 2664 | 26.05105 | 0.5138 | 0 | 1254 | 8 | 0.6379585 | 0.2931 | 0 | 460 | 36.6826156 | 0.9714 | 1 | 0 | 1139 | 0.000000 | 0.1238 | 0 | 125 | 1139 | 10.974539 | 0.7477 | 0 | 0 | 2664 | 0.0000 | 0.3640 | 0 | 2.16035 | 0.4069 | 0 | 2.88178 | 0.6997 | 2 | 0.5138 | 0.5090 | 0 | 2.5000 | 0.4882 | 1 | 8.05593 | 0.5185 | 3 | 3562 | 1313 | 1248 | 1370 | 3528 | 38.83220 | 0.8512 | 1 | 128 | 1562 | 8.194622 | 0.7935 | 1 | 168 | 844 | 19.905213 | 0.44510 | 0 | 237 | 404 | 58.66337 | 0.8359 | 1 | 405 | 1248 | 32.45192 | 0.60420 | 0 | 396 | 2211 | 17.91045 | 0.7857 | 1 | 444 | 3547 | 12.517620 | 0.7758 | 1 | 355 | 9.966311 | 0.1800 | 0 | 954 | 26.78271 | 0.7923 | 1 | 629 | 2593.000 | 24.25762 | 0.8730 | 1 | 171 | 797.0000 | 21.455458 | 0.7186 | 0 | 0 | 3211 | 0.0000000 | 0.09479 | 0 | 1009 | 3562.000 | 28.32678 | 0.4668 | 0 | 1313 | 14 | 1.0662605 | 0.3165 | 0 | 443 | 33.7395278 | 0.9663 | 1 | 73 | 1248 | 5.8493590 | 0.8211 | 1 | 17 | 1248.000 | 1.362180 | 0.1554 | 0 | 112 | 3562 | 3.1443010 | 0.8514 | 1 | 3.81040 | 0.8569 | 4 | 2.65869 | 0.5847 | 2 | 0.4668 | 0.4629 | 0 | 3.1107 | 0.7714 | 3 | 10.04659 | 0.7851 | 9 | Yes | 0 | 0 | \$0 | 0 | 0 | \$0 | 0 |
| 01001021100 | 01 | 001 | 021100 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3298 | 1502 | 1323 | 860 | 3298 | 26.07641 | 0.6211 | 0 | 297 | 1605 | 18.504673 | 0.94340 | 1 | 250 | 1016 | 24.60630 | 0.32070 | 0 | 74 | 307 | 24.10423 | 0.11920 | 0 | 324 | 1323 | 24.48980 | 0.17380 | 0 | 710 | 2231 | 31.82429 | 0.8976 | 1 | 654 | 3565 | 18.34502 | 0.7018 | 0 | 411 | 12.46210 | 0.5001 | 0 | 738 | 22.37720 | 0.3934 | 0 | 936 | 2861 | 32.71583 | 0.9807 | 1 | 138 | 825 | 16.727273 | 0.5715 | 0 | 9 | 3155 | 0.2852615 | 0.25010 | 0 | 1979 | 3298 | 60.00606 | 0.7703 | 1 | 1502 | 14 | 0.9320905 | 0.3234 | 0 | 659 | 43.8748336 | 0.9849 | 1 | 44 | 1323 | 3.325775 | 0.7062 | 0 | 137 | 1323 | 10.355253 | 0.7313 | 0 | 0 | 3298 | 0.0000 | 0.3640 | 0 | 3.33770 | 0.7351 | 2 | 2.69580 | 0.6028 | 1 | 0.7703 | 0.7631 | 1 | 3.1098 | 0.7827 | 1 | 9.91360 | 0.7557 | 5 | 3499 | 1825 | 1462 | 1760 | 3499 | 50.30009 | 0.9396 | 1 | 42 | 966 | 4.347826 | 0.4539 | 0 | 426 | 1274 | 33.437991 | 0.85200 | 1 | 52 | 188 | 27.65957 | 0.1824 | 0 | 478 | 1462 | 32.69494 | 0.61110 | 0 | 422 | 2488 | 16.96141 | 0.7638 | 1 | 497 | 3499 | 14.204058 | 0.8246 | 1 | 853 | 24.378394 | 0.8688 | 1 | 808 | 23.09231 | 0.5829 | 0 | 908 | 2691.100 | 33.74084 | 0.9808 | 1 | 179 | 811.6985 | 22.052524 | 0.7323 | 0 | 8 | 3248 | 0.2463054 | 0.26220 | 0 | 1986 | 3498.713 | 56.76373 | 0.7175 | 0 | 1825 | 29 | 1.5890411 | 0.3551 | 0 | 576 | 31.5616438 | 0.9594 | 1 | 88 | 1462 | 6.0191518 | 0.8269 | 1 | 148 | 1461.993 | 10.123166 | 0.7364 | 0 | 38 | 3499 | 1.0860246 | 0.7013 | 0 | 3.59300 | 0.8073 | 3 | 3.42700 | 0.9156 | 2 | 0.7175 | 0.7114 | 0 | 3.5791 | 0.9216 | 2 | 11.31660 | 0.9150 | 7 | Yes | 0 | 0 | \$0 | 0 | 0 | \$0 | 0 |
| 01003010200 | 01 | 003 | 010200 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 2612 | 1220 | 1074 | 338 | 2605 | 12.97505 | 0.2907 | 0 | 44 | 1193 | 3.688181 | 0.14720 | 0 | 172 | 928 | 18.53448 | 0.13090 | 0 | 31 | 146 | 21.23288 | 0.09299 | 0 | 203 | 1074 | 18.90130 | 0.05657 | 0 | 455 | 1872 | 24.30556 | 0.8016 | 1 | 456 | 2730 | 16.70330 | 0.6445 | 0 | 401 | 15.35222 | 0.6847 | 0 | 563 | 21.55436 | 0.3406 | 0 | 410 | 2038 | 20.11776 | 0.7755 | 1 | 64 | 779 | 8.215661 | 0.2181 | 0 | 0 | 2510 | 0.0000000 | 0.09298 | 0 | 329 | 2612 | 12.59571 | 0.3113 | 0 | 1220 | 38 | 3.1147541 | 0.4648 | 0 | 385 | 31.5573770 | 0.9545 | 1 | 20 | 1074 | 1.862197 | 0.5509 | 0 | 43 | 1074 | 4.003724 | 0.4088 | 0 | 0 | 2612 | 0.0000 | 0.3640 | 0 | 1.94057 | 0.3398 | 1 | 2.11188 | 0.2802 | 1 | 0.3113 | 0.3084 | 0 | 2.7430 | 0.6129 | 1 | 7.10675 | 0.3771 | 3 | 2928 | 1312 | 1176 | 884 | 2928 | 30.19126 | 0.7334 | 0 | 29 | 1459 | 1.987663 | 0.1356 | 0 | 71 | 830 | 8.554217 | 0.03726 | 0 | 134 | 346 | 38.72832 | 0.3964 | 0 | 205 | 1176 | 17.43197 | 0.12010 | 0 | 294 | 2052 | 14.32749 | 0.6940 | 0 | 219 | 2925 | 7.487179 | 0.5423 | 0 | 556 | 18.989071 | 0.6705 | 0 | 699 | 23.87295 | 0.6339 | 0 | 489 | 2226.455 | 21.96317 | 0.8122 | 1 | 191 | 783.8820 | 24.365914 | 0.7799 | 1 | 0 | 2710 | 0.0000000 | 0.09479 | 0 | 398 | 2927.519 | 13.59513 | 0.2511 | 0 | 1312 | 13 | 0.9908537 | 0.3111 | 0 | 400 | 30.4878049 | 0.9557 | 1 | 6 | 1176 | 0.5102041 | 0.2590 | 0 | 81 | 1176.202 | 6.886570 | 0.6115 | 0 | 7 | 2928 | 0.2390710 | 0.4961 | 0 | 2.22540 | 0.4183 | 0 | 2.99129 | 0.7634 | 2 | 0.2511 | 0.2490 | 0 | 2.6334 | 0.5496 | 1 | 8.10119 | 0.5207 | 3 | Yes | 0 | 0 | \$0 | 1 | 408000 | \$408,000 | 1 |
| 01003010500 | 01 | 003 | 010500 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 4230 | 1779 | 1425 | 498 | 3443 | 14.46413 | 0.3337 | 0 | 166 | 1625 | 10.215385 | 0.71790 | 0 | 151 | 1069 | 14.12535 | 0.04638 | 0 | 196 | 356 | 55.05618 | 0.73830 | 0 | 347 | 1425 | 24.35088 | 0.17010 | 0 | 707 | 2945 | 24.00679 | 0.7967 | 1 | 528 | 4001 | 13.19670 | 0.5005 | 0 | 619 | 14.63357 | 0.6436 | 0 | 790 | 18.67612 | 0.1937 | 0 | 536 | 3096 | 17.31266 | 0.6572 | 0 | 165 | 920 | 17.934783 | 0.6102 | 0 | 20 | 4021 | 0.4973887 | 0.32320 | 0 | 754 | 4230 | 17.82506 | 0.4023 | 0 | 1779 | 97 | 5.4525014 | 0.5525 | 0 | 8 | 0.4496908 | 0.4600 | 0 | 63 | 1425 | 4.421053 | 0.7762 | 1 | 90 | 1425 | 6.315790 | 0.5691 | 0 | 787 | 4230 | 18.6052 | 0.9649 | 1 | 2.51890 | 0.5121 | 1 | 2.42790 | 0.4539 | 0 | 0.4023 | 0.3986 | 0 | 3.3227 | 0.8628 | 2 | 8.67180 | 0.6054 | 3 | 5877 | 1975 | 1836 | 820 | 5244 | 15.63692 | 0.3902 | 0 | 90 | 2583 | 3.484321 | 0.3361 | 0 | 159 | 1345 | 11.821561 | 0.10530 | 0 | 139 | 491 | 28.30957 | 0.1924 | 0 | 298 | 1836 | 16.23094 | 0.09053 | 0 | 570 | 4248 | 13.41808 | 0.6669 | 0 | 353 | 5247 | 6.727654 | 0.4924 | 0 | 1109 | 18.870172 | 0.6645 | 0 | 1144 | 19.46571 | 0.3411 | 0 | 717 | 4102.545 | 17.47696 | 0.6332 | 0 | 103 | 1286.1180 | 8.008596 | 0.2341 | 0 | 0 | 5639 | 0.0000000 | 0.09479 | 0 | 868 | 5877.481 | 14.76823 | 0.2709 | 0 | 1975 | 26 | 1.3164557 | 0.3359 | 0 | 45 | 2.2784810 | 0.6271 | 0 | 9 | 1836 | 0.4901961 | 0.2540 | 0 | 116 | 1835.798 | 6.318779 | 0.5811 | 0 | 633 | 5877 | 10.7708014 | 0.9507 | 1 | 1.97613 | 0.3410 | 0 | 1.96769 | 0.1961 | 0 | 0.2709 | 0.2686 | 0 | 2.7488 | 0.6077 | 1 | 6.96352 | 0.3406 | 1 | Yes | 0 | 0 | \$0 | 0 | 0 | \$0 | 0 |
| 01003010600 | 01 | 003 | 010600 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 3724 | 1440 | 1147 | 1973 | 3724 | 52.98067 | 0.9342 | 1 | 142 | 1439 | 9.867964 | 0.69680 | 0 | 235 | 688 | 34.15698 | 0.62950 | 0 | 187 | 459 | 40.74074 | 0.40290 | 0 | 422 | 1147 | 36.79163 | 0.55150 | 0 | 497 | 1876 | 26.49254 | 0.8354 | 1 | 511 | 3661 | 13.95794 | 0.5334 | 0 | 246 | 6.60580 | 0.1481 | 0 | 1256 | 33.72718 | 0.9305 | 1 | 496 | 2522 | 19.66693 | 0.7587 | 1 | 274 | 838 | 32.696897 | 0.8779 | 1 | 32 | 3479 | 0.9198045 | 0.42810 | 0 | 2606 | 3724 | 69.97852 | 0.8184 | 1 | 1440 | 21 | 1.4583333 | 0.3683 | 0 | 321 | 22.2916667 | 0.9036 | 1 | 97 | 1147 | 8.456844 | 0.8956 | 1 | 167 | 1147 | 14.559721 | 0.8209 | 1 | 0 | 3724 | 0.0000 | 0.3640 | 0 | 3.55130 | 0.7859 | 2 | 3.14330 | 0.8145 | 3 | 0.8184 | 0.8108 | 1 | 3.3524 | 0.8725 | 3 | 10.86540 | 0.8550 | 9 | 4115 | 1534 | 1268 | 1676 | 3997 | 41.93145 | 0.8814 | 1 | 294 | 1809 | 16.252073 | 0.9674 | 1 | 341 | 814 | 41.891892 | 0.94320 | 1 | 204 | 454 | 44.93392 | 0.5438 | 0 | 545 | 1268 | 42.98107 | 0.83620 | 1 | 624 | 2425 | 25.73196 | 0.9002 | 1 | 994 | 4115 | 24.155529 | 0.9602 | 1 | 642 | 15.601458 | 0.4841 | 0 | 1126 | 27.36331 | 0.8175 | 1 | 568 | 2989.000 | 19.00301 | 0.7045 | 0 | 212 | 715.0000 | 29.650350 | 0.8592 | 1 | 56 | 3825 | 1.4640523 | 0.53120 | 0 | 2715 | 4115.000 | 65.97813 | 0.7732 | 1 | 1534 | 0 | 0.0000000 | 0.1079 | 0 | 529 | 34.4850065 | 0.9685 | 1 | 101 | 1268 | 7.9652997 | 0.8795 | 1 | 89 | 1268.000 | 7.018927 | 0.6184 | 0 | 17 | 4115 | 0.4131227 | 0.5707 | 0 | 4.54540 | 0.9754 | 5 | 3.39650 | 0.9081 | 2 | 0.7732 | 0.7667 | 1 | 3.1450 | 0.7858 | 2 | 11.86010 | 0.9520 | 10 | Yes | 0 | 0 | \$0 | 1 | 8000000 | \$8,000,000 | 1 |
svi_national_nmtc_county_sum <- summarize_county_nmtc(svi_national_nmtc)
svi_national_nmtc_county_sum %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| State | County | Division | post10_nmtc_project_cnt | tract_cnt | post10_nmtc_project_dollars | post10_nmtc_dollars_formatted |
|---|---|---|---|---|---|---|
| AK | Aleutians East Borough | Pacific Division | 1 | 1 | 15762500 | \$15,762,500 |
| AK | Aleutians West Census Area | Pacific Division | 0 | 1 | 0 | \$0 |
| AK | Anchorage Municipality | Pacific Division | 1 | 13 | 9800000 | \$9,800,000 |
| AK | Bethel Census Area | Pacific Division | 0 | 1 | 0 | \$0 |
| AK | Fairbanks North Star Borough | Pacific Division | 0 | 4 | 0 | \$0 |
| AK | Hoonah-Angoon Census Area | Pacific Division | 0 | 1 | 0 | \$0 |
svi_divisional_nmtc_county_sum <- summarize_county_nmtc(svi_divisional_nmtc)
svi_divisional_nmtc_county_sum %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| State | County | Division | post10_nmtc_project_cnt | tract_cnt | post10_nmtc_project_dollars | post10_nmtc_dollars_formatted |
|---|---|---|---|---|---|---|
| AK | Aleutians East Borough | Pacific Division | 1 | 1 | 15762500 | \$15,762,500 |
| AK | Aleutians West Census Area | Pacific Division | 0 | 1 | 0 | \$0 |
| AK | Anchorage Municipality | Pacific Division | 1 | 13 | 9800000 | \$9,800,000 |
| AK | Bethel Census Area | Pacific Division | 0 | 1 | 0 | \$0 |
| AK | Fairbanks North Star Borough | Pacific Division | 0 | 4 | 0 | \$0 |
| AK | Hoonah-Angoon Census Area | Pacific Division | 0 | 1 | 0 | \$0 |
# Create data frame of NMTC eligible tracts 2010 nationally
svi_national_nmtc10 <- svi_national_nmtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county,
state, state_name, county, region_number, region, division_number,
division, F_TOTAL_10, E_TOTPOP_10) %>% rename("F_TOTAL" = "F_TOTAL_10")
# Count national-level SVI flags for 2010, create unified fips column
svi_2010_national_county_flags_nmtc <- flag_summarize(svi_national_nmtc10, "E_TOTPOP_10") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")
# Add suffix to flag columns 2010
colnames(svi_2010_national_county_flags_nmtc)[11:15] <- paste0(colnames(svi_2010_national_county_flags_nmtc)[11:15], 10)
# Create data frame of NMTC eligible tracts 2020 nationally
svi_national_nmtc20 <- svi_national_nmtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county,
state, state_name, county, region_number, region, division_number,
division, F_TOTAL_20, E_TOTPOP_20) %>% rename("F_TOTAL" = "F_TOTAL_20")
# Count national-level SVI flags for 2020, create unified fips column
svi_2020_national_county_flags_nmtc <- flag_summarize(svi_national_nmtc20, "E_TOTPOP_20") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")
# Identify needed columns for 2020, add suffix
colnames(svi_2020_national_county_flags_nmtc)[11:15] <- paste0(colnames(svi_2020_national_county_flags_nmtc)[11:15], "20")
# Filter to needed columns for 2020 to avoid duplicate column column names
svi_2020_national_county_flags_join_nmtc <- svi_2020_national_county_flags_nmtc %>% ungroup() %>% select("fips_county_st", all_of(colnames(svi_2020_national_county_flags_nmtc)[11:15]))
# Join 2010 and 2020 data
svi_national_county_flags_nmtc <- left_join(svi_2010_national_county_flags_nmtc, svi_2020_national_county_flags_join_nmtc, join_by("fips_county_st" == "fips_county_st"))
svi_national_county_flags_nmtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| fips_county_st | FIPS_st | FIPS_county | state | state_name | county | region_number | region | division_number | division | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 01001 | 01 | 001 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 14 | 7982 | 0.0017539 | 0.6 | 0.8 | 18 | 8818 | 0.0020413 | 0.6 | 1.0 |
| 01003 | 01 | 003 | AL | Alabama | Baldwin County | 3 | South Region | 6 | East South Central Division | 34 | 38458 | 0.0008841 | 0.8 | 0.4 | 34 | 46255 | 0.0007351 | 0.8 | 0.2 |
| 01005 | 01 | 005 | AL | Alabama | Barbour County | 3 | South Region | 6 | East South Central Division | 43 | 21287 | 0.0020200 | 0.8 | 1.0 | 44 | 18811 | 0.0023391 | 0.8 | 1.0 |
| 01007 | 01 | 007 | AL | Alabama | Bibb County | 3 | South Region | 6 | East South Central Division | 11 | 17570 | 0.0006261 | 0.4 | 0.2 | 16 | 17663 | 0.0009058 | 0.6 | 0.4 |
| 01009 | 01 | 009 | AL | Alabama | Blount County | 3 | South Region | 6 | East South Central Division | 12 | 16995 | 0.0007061 | 0.4 | 0.2 | 8 | 16546 | 0.0004835 | 0.4 | 0.2 |
| 01011 | 01 | 011 | AL | Alabama | Bullock County | 3 | South Region | 6 | East South Central Division | 21 | 10923 | 0.0019225 | 0.6 | 1.0 | 18 | 10173 | 0.0017694 | 0.6 | 0.8 |
svi_national_county_nmtc <- left_join(svi_national_nmtc_county_sum,
svi_national_county_flags_nmtc,
join_by("State" == "state", "County" == "county",
"Division" == "division"))
svi_national_county_nmtc$post10_nmtc_project_cnt[is.na(svi_national_county_nmtc$post10_nmtc_project_cnt)] <- 0
svi_national_county_nmtc$county_name <- paste0(svi_national_county_nmtc$County, ", ", svi_national_county_nmtc$State)
svi_national_county_nmtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| State | County | Division | post10_nmtc_project_cnt | tract_cnt | post10_nmtc_project_dollars | post10_nmtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AK | Aleutians East Borough | Pacific Division | 1 | 1 | 15762500 | \$15,762,500 | 02013 | 02 | 013 | Alaska | 4 | West Region | 9 | 8 | 3703 | 0.0021604 | 0.4 | 1.0 | 5 | 3389 | 0.0014754 | 0.2 | 0.8 | Aleutians East Borough, AK |
| AK | Aleutians West Census Area | Pacific Division | 0 | 1 | 0 | \$0 | 02016 | 02 | 016 | Alaska | 4 | West Region | 9 | 6 | 1774 | 0.0033822 | 0.2 | 1.0 | 6 | 950 | 0.0063158 | 0.2 | 1.0 | Aleutians West Census Area, AK |
| AK | Anchorage Municipality | Pacific Division | 1 | 13 | 9800000 | \$9,800,000 | 02020 | 02 | 020 | Alaska | 4 | West Region | 9 | 72 | 64432 | 0.0011175 | 1.0 | 0.4 | 87 | 69679 | 0.0012486 | 1.0 | 0.6 | Anchorage Municipality, AK |
| AK | Bethel Census Area | Pacific Division | 0 | 1 | 0 | \$0 | 02050 | 02 | 050 | Alaska | 4 | West Region | 9 | 8 | 1386 | 0.0057720 | 0.4 | 1.0 | 10 | 1404 | 0.0071225 | 0.4 | 1.0 | Bethel Census Area, AK |
| AK | Fairbanks North Star Borough | Pacific Division | 0 | 4 | 0 | \$0 | 02090 | 02 | 090 | Alaska | 4 | West Region | 9 | 13 | 17281 | 0.0007523 | 0.4 | 0.2 | 17 | 20094 | 0.0008460 | 0.6 | 0.4 | Fairbanks North Star Borough, AK |
| AK | Hoonah-Angoon Census Area | Pacific Division | 0 | 1 | 0 | \$0 | 02105 | 02 | 105 | Alaska | 4 | West Region | 9 | 4 | 1888 | 0.0021186 | 0.2 | 1.0 | 5 | 2073 | 0.0024120 | 0.2 | 1.0 | Hoonah-Angoon Census Area, AK |
# Create data frame of NMTC eligible tracts 2020 nationally
svi_divisional_nmtc10 <- svi_divisional_nmtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county,
state, state_name, county, region_number, region, division_number,
division, F_TOTAL_10, E_TOTPOP_10) %>% rename("F_TOTAL" = "F_TOTAL_10")
# Count divisional-level SVI flags for 2010, create unified fips column
svi_2010_divisional_county_flags_nmtc <- flag_summarize(svi_divisional_nmtc10, "E_TOTPOP_10") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")
# Add suffix to flag columns 2010
colnames(svi_2010_divisional_county_flags_nmtc)[11:15] <- paste0(colnames(svi_2010_divisional_county_flags_nmtc)[11:15], "10")
# Create data frame of NMTC eligible tracts 2020 nationally
svi_divisional_nmtc20 <- svi_divisional_nmtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county,
state, state_name, county, region_number, region, division_number,
division, F_TOTAL_20, E_TOTPOP_20) %>% rename("F_TOTAL" = "F_TOTAL_20")
# Count divisional-level SVI flags for 2020, create unified fips column
svi_2020_divisional_county_flags_nmtc <- flag_summarize(svi_divisional_nmtc20, "E_TOTPOP_20") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")
# Identify needed columns for 2020
colnames(svi_2020_divisional_county_flags_nmtc)[11:15] <- paste0(colnames(svi_2020_divisional_county_flags_nmtc)[11:15], "20")
# Filter to needed columns for 2020 to avoid duplicate column column names
svi_2020_divisional_county_flags_join_nmtc <- svi_2020_divisional_county_flags_nmtc %>% ungroup() %>% select("fips_county_st", all_of(colnames(svi_2020_divisional_county_flags_nmtc)[11:15]))
# Join 2010 and 2020 data
svi_divisional_county_flags_nmtc <- left_join(svi_2010_divisional_county_flags_nmtc, svi_2020_divisional_county_flags_join_nmtc, join_by("fips_county_st" == "fips_county_st"))
svi_divisional_county_flags_nmtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| fips_county_st | FIPS_st | FIPS_county | state | state_name | county | region_number | region | division_number | division | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 02013 | 02 | 013 | AK | Alaska | Aleutians East Borough | 4 | West Region | 9 | Pacific Division | 9 | 3703 | 0.0024305 | 0.2 | 1.0 | 6 | 3389 | 0.0017704 | 0.2 | 1.0 |
| 02016 | 02 | 016 | AK | Alaska | Aleutians West Census Area | 4 | West Region | 9 | Pacific Division | 4 | 1774 | 0.0022548 | 0.2 | 1.0 | 6 | 950 | 0.0063158 | 0.2 | 1.0 |
| 02020 | 02 | 020 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 56 | 64432 | 0.0008691 | 0.8 | 0.2 | 73 | 69679 | 0.0010477 | 0.8 | 0.4 |
| 02050 | 02 | 050 | AK | Alaska | Bethel Census Area | 4 | West Region | 9 | Pacific Division | 8 | 1386 | 0.0057720 | 0.2 | 1.0 | 9 | 1404 | 0.0064103 | 0.2 | 1.0 |
| 02090 | 02 | 090 | AK | Alaska | Fairbanks North Star Borough | 4 | West Region | 9 | Pacific Division | 14 | 17281 | 0.0008101 | 0.4 | 0.2 | 15 | 20094 | 0.0007465 | 0.4 | 0.2 |
| 02105 | 02 | 105 | AK | Alaska | Hoonah-Angoon Census Area | 4 | West Region | 9 | Pacific Division | 4 | 1888 | 0.0021186 | 0.2 | 1.0 | 7 | 2073 | 0.0033767 | 0.2 | 1.0 |
svi_divisional_county_nmtc <- left_join(svi_divisional_nmtc_county_sum,
svi_divisional_county_flags_nmtc,
join_by("State" == "state", "County" == "county",
"Division" == "division"))
svi_divisional_county_nmtc$post10_nmtc_project_cnt[is.na(svi_divisional_county_nmtc $post10_nmtc_project_cnt)] <- 0
svi_divisional_county_nmtc$county_name <- paste0(svi_divisional_county_nmtc$County, ", ", svi_divisional_county_nmtc$State)
svi_divisional_county_nmtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| State | County | Division | post10_nmtc_project_cnt | tract_cnt | post10_nmtc_project_dollars | post10_nmtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AK | Aleutians East Borough | Pacific Division | 1 | 1 | 15762500 | \$15,762,500 | 02013 | 02 | 013 | Alaska | 4 | West Region | 9 | 9 | 3703 | 0.0024305 | 0.2 | 1.0 | 6 | 3389 | 0.0017704 | 0.2 | 1.0 | Aleutians East Borough, AK |
| AK | Aleutians West Census Area | Pacific Division | 0 | 1 | 0 | \$0 | 02016 | 02 | 016 | Alaska | 4 | West Region | 9 | 4 | 1774 | 0.0022548 | 0.2 | 1.0 | 6 | 950 | 0.0063158 | 0.2 | 1.0 | Aleutians West Census Area, AK |
| AK | Anchorage Municipality | Pacific Division | 1 | 13 | 9800000 | \$9,800,000 | 02020 | 02 | 020 | Alaska | 4 | West Region | 9 | 56 | 64432 | 0.0008691 | 0.8 | 0.2 | 73 | 69679 | 0.0010477 | 0.8 | 0.4 | Anchorage Municipality, AK |
| AK | Bethel Census Area | Pacific Division | 0 | 1 | 0 | \$0 | 02050 | 02 | 050 | Alaska | 4 | West Region | 9 | 8 | 1386 | 0.0057720 | 0.2 | 1.0 | 9 | 1404 | 0.0064103 | 0.2 | 1.0 | Bethel Census Area, AK |
| AK | Fairbanks North Star Borough | Pacific Division | 0 | 4 | 0 | \$0 | 02090 | 02 | 090 | Alaska | 4 | West Region | 9 | 14 | 17281 | 0.0008101 | 0.4 | 0.2 | 15 | 20094 | 0.0007465 | 0.4 | 0.2 | Fairbanks North Star Borough, AK |
| AK | Hoonah-Angoon Census Area | Pacific Division | 0 | 1 | 0 | \$0 | 02105 | 02 | 105 | Alaska | 4 | West Region | 9 | 4 | 1888 | 0.0021186 | 0.2 | 1.0 | 7 | 2073 | 0.0033767 | 0.2 | 1.0 | Hoonah-Angoon Census Area, AK |
LIHTC Data Wrangling
lihtc_eligible_flag <- lihtc_eligible %>%
select("fips", "state", "county", "stcnty", "tract", "metro", "cbsa", "qct_2010") %>%
rename("GEOID10" = "fips") %>%
mutate(lihtc_eligibility = if_else(qct_2010 == 1, "Yes", "No")) %>%
filter(tolower(lihtc_eligibility) == "yes") %>%
select(GEOID10, lihtc_eligibility)
lihtc_eligible_flag %>% head()
## # A tibble: 6 × 2
## GEOID10 lihtc_eligibility
## <chr> <chr>
## 1 01003010600 Yes
## 2 01005950200 Yes
## 3 01005950300 Yes
## 4 01005950400 Yes
## 5 01005950600 Yes
## 6 01005950700 Yes
lihtc_projects10 <- lihtc_projects %>%
filter(yr_alloc < 8000) %>%
filter(yr_alloc <= 2010) %>%
count(fips2010) %>%
rename("pre10_lihtc_project_cnt" = "n")
lihtc_projects10 %>% head()
## fips2010 pre10_lihtc_project_cnt
## 1 01001020300 2
## 2 01001020500 5
## 3 01001021100 1
## 4 01003010200 1
## 5 01003010600 1
## 6 01003010703 1
lihtc_dollars10 <- lihtc_projects %>%
filter(yr_alloc < 8000) %>%
filter(yr_alloc <= 2010) %>%
select(fips2010, allocamt)
lihtc_dollars10$allocamt[is.na(lihtc_dollars10$allocamt)] <- 0
lihtc_dollars10 <- lihtc_dollars10 %>%
group_by(fips2010) %>%
summarise(pre10_lihtc_project_dollars = sum(allocamt, na.rm = TRUE))
lihtc_dollars10 %>% head()
## # A tibble: 6 × 2
## fips2010 pre10_lihtc_project_dollars
## <chr> <dbl>
## 1 01001020300 216593
## 2 01001020500 2250459
## 3 01001021100 53109
## 4 01003010200 0
## 5 01003010600 376889
## 6 01003010703 717113
lihtc_projects10 <- left_join(lihtc_projects10, lihtc_dollars10, join_by(fips2010 == fips2010))
lihtc_projects10 %>% head()
## fips2010 pre10_lihtc_project_cnt pre10_lihtc_project_dollars
## 1 01001020300 2 216593
## 2 01001020500 5 2250459
## 3 01001021100 1 53109
## 4 01003010200 1 0
## 5 01003010600 1 376889
## 6 01003010703 1 717113
lihtc_projects20 <- lihtc_projects %>%
filter(yr_alloc < 8000) %>%
filter(yr_alloc > 2010) %>%
filter(yr_alloc < 2021) %>%
count(fips2010) %>%
rename("post10_lihtc_project_cnt" = "n")
lihtc_projects20 %>% head()
## fips2010 post10_lihtc_project_cnt
## 1 01003010500 1
## 2 01003011403 1
## 3 01003011601 1
## 4 01005950900 1
## 5 01009050102 1
## 6 01017954600 2
lihtc_dollars20 <- lihtc_projects %>%
filter(yr_alloc < 8000) %>%
filter(yr_alloc > 2010) %>%
filter(yr_alloc < 2021) %>%
select(fips2010, allocamt)
lihtc_dollars20$allocamt[is.na(lihtc_dollars20$allocamt)] <- 0
lihtc_dollars20 <- lihtc_dollars20 %>%
group_by(fips2010) %>%
summarise(post10_lihtc_project_dollars = sum(allocamt, na.rm = TRUE))
lihtc_dollars20 %>% head()
## # A tibble: 6 × 2
## fips2010 post10_lihtc_project_dollars
## <chr> <dbl>
## 1 01003010500 481325
## 2 01003011403 828342
## 3 01003011601 887856
## 4 01005950900 400758
## 5 01009050102 463000
## 6 01017954600 950192
lihtc_projects20 <- left_join(lihtc_projects20, lihtc_dollars20, join_by(fips2010 == fips2010))
lihtc_projects20 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| fips2010 | post10_lihtc_project_cnt | post10_lihtc_project_dollars |
|---|---|---|
| 01003010500 | 1 | 481325 |
| 01003011403 | 1 | 828342 |
| 01003011601 | 1 | 887856 |
| 01005950900 | 1 | 400758 |
| 01009050102 | 1 | 463000 |
| 01017954600 | 2 | 950192 |
svi_divisional_lihtc10 <- left_join(svi_divisional, lihtc_projects10, join_by("GEOID_2010_trt" == "fips2010"))
svi_divisional_lihtc10 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | pre10_lihtc_project_cnt | pre10_lihtc_project_dollars |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 02013000100 | 02 | 013 | 000100 | AK | Alaska | Aleutians East Borough | 4 | West Region | 9 | Pacific Division | 3703 | 474 | 267 | 1212 | 3695 | 32.801082 | 0.75700 | 1 | 111 | 3163 | 3.509327 | 0.08691 | 0 | 25 | 158 | 15.82278 | 0.01337 | 0 | 17 | 109 | 15.59633 | 0.02605 | 0 | 42 | 267 | 15.73034 | 0.004754 | 0 | 1082 | 3017 | 35.863441 | 0.8542 | 1 | 2060 | 3112 | 66.19537 | 0.9999 | 1 | 127 | 3.429652 | 0.04240 | 0 | 315 | 8.506616 | 0.03961 | 0 | 182 | 2849 | 6.388206 | 0.07775 | 0 | 50 | 165 | 30.303030 | 0.88350 | 1 | 1070 | 3617 | 29.5825270 | 0.93700 | 1 | 3492 | 3703 | 94.30192 | 0.9141 | 1 | 474 | 8 | 1.687764 | 0.29250 | 0 | 42 | 8.8607595 | 0.8128 | 1 | 7 | 267 | 2.621723 | 0.4003 | 0 | 77 | 267 | 28.8389513 | 0.96850 | 1 | 2969 | 3703 | 80.17823 | 0.9940 | 1 | 2.702764 | 0.5611 | 3 | 1.98026 | 0.23800 | 2 | 0.9141 | 0.9047 | 1 | 3.46810 | 0.8902 | 3 | 9.065224 | 0.6397 | 9 | 3389 | 1199 | 988 | 698 | 3379 | 20.656999 | 0.5925 | 0 | 86 | 2414 | 3.562552 | 0.2665 | 0 | 67 | 607 | 11.037891 | 0.01803 | 0 | 74 | 381 | 19.42257 | 0.04067 | 0 | 141 | 988 | 14.27126 | 0.006988 | 0 | 354 | 2646 | 13.378685 | 0.61070 | 0 | 1345 | 3384 | 39.745863 | 0.9997 | 1 | 381 | 11.242254 | 0.31390 | 0 | 443 | 13.07170 | 0.0988 | 0 | 339 | 2941.000 | 11.526692 | 0.3860 | 0 | 135 | 593.000 | 22.765599 | 0.7920 | 1 | 334 | 3276 | 10.1953602 | 0.72620 | 0 | 2939 | 3389.000 | 86.72175 | 0.81100 | 1 | 1199 | 38 | 3.169308 | 0.3474 | 0 | 69 | 5.7547957 | 0.7806 | 1 | 30 | 988 | 3.0364372 | 0.36010 | 0 | 220 | 988.000 | 22.267207 | 0.95270 | 1 | 1035 | 3389 | 30.5399823 | 0.9843 | 1 | 2.476388 | 0.4947 | 1 | 2.31690 | 0.37850 | 1 | 0.81100 | 0.80380 | 1 | 3.42510 | 0.8683 | 3 | 9.029388 | 0.6419 | 6 | NA | NA |
| 02016000100 | 02 | 016 | 000100 | AK | Alaska | Aleutians West Census Area | 4 | West Region | 9 | Pacific Division | 1774 | 1056 | 166 | 328 | 1231 | 26.645004 | 0.65530 | 0 | 15 | 1370 | 1.094890 | 0.01369 | 0 | 25 | 95 | 26.31579 | 0.09653 | 0 | 16 | 71 | 22.53521 | 0.05099 | 0 | 41 | 166 | 24.69880 | 0.029080 | 0 | 207 | 1330 | 15.563910 | 0.5839 | 0 | 484 | 973 | 49.74306 | 0.9952 | 1 | 53 | 2.987599 | 0.03180 | 0 | 182 | 10.259301 | 0.05188 | 0 | 147 | 747 | 19.678715 | 0.86420 | 1 | 19 | 96 | 19.791667 | 0.66060 | 0 | 79 | 1718 | 4.5983702 | 0.46890 | 0 | 1154 | 1774 | 65.05073 | 0.6522 | 0 | 1056 | 22 | 2.083333 | 0.31610 | 0 | 0 | 0.0000000 | 0.2497 | 0 | 10 | 166 | 6.024096 | 0.6154 | 0 | 84 | 166 | 50.6024096 | 0.99320 | 1 | 1324 | 1774 | 74.63360 | 0.9935 | 1 | 2.277170 | 0.4443 | 1 | 2.07738 | 0.27780 | 1 | 0.6522 | 0.6454 | 0 | 3.16790 | 0.7874 | 2 | 8.174650 | 0.5311 | 4 | 950 | 694 | 199 | 218 | 719 | 30.319889 | 0.7848 | 1 | 15 | 560 | 2.678571 | 0.1560 | 0 | 11 | 117 | 9.401709 | 0.01305 | 0 | 14 | 82 | 17.07317 | 0.03088 | 0 | 25 | 199 | 12.56281 | 0.003541 | 0 | 48 | 681 | 7.048458 | 0.37250 | 0 | 238 | 721 | 33.009709 | 0.9989 | 1 | 116 | 12.210526 | 0.37310 | 0 | 195 | 20.52632 | 0.4153 | 0 | 113 | 526.000 | 21.482890 | 0.8931 | 1 | 31 | 98.000 | 31.632653 | 0.9318 | 1 | 17 | 900 | 1.8888889 | 0.29830 | 0 | 713 | 950.000 | 75.05263 | 0.69000 | 0 | 694 | 17 | 2.449568 | 0.3163 | 0 | 0 | 0.0000000 | 0.2466 | 0 | 7 | 199 | 3.5175879 | 0.39980 | 0 | 68 | 199.000 | 34.170854 | 0.98260 | 1 | 274 | 950 | 28.8421053 | 0.9832 | 1 | 2.315741 | 0.4476 | 2 | 2.91160 | 0.70420 | 2 | 0.69000 | 0.68390 | 0 | 2.92850 | 0.6794 | 2 | 8.845841 | 0.6188 | 6 | NA | NA |
| 02016000200 | 02 | 016 | 000200 | AK | Alaska | Aleutians West Census Area | 4 | West Region | 9 | Pacific Division | 4485 | 507 | 355 | 1315 | 4469 | 29.424927 | 0.70570 | 0 | 87 | 3859 | 2.254470 | 0.03381 | 0 | 20 | 94 | 21.27660 | 0.03822 | 0 | 35 | 261 | 13.40996 | 0.02120 | 0 | 55 | 355 | 15.49296 | 0.004567 | 0 | 1292 | 3728 | 34.656652 | 0.8445 | 1 | 981 | 4256 | 23.04981 | 0.7621 | 1 | 186 | 4.147157 | 0.06676 | 0 | 384 | 8.561873 | 0.03989 | 0 | 235 | 3656 | 6.427790 | 0.07933 | 0 | 38 | 204 | 18.627451 | 0.62370 | 0 | 1458 | 4397 | 33.1589720 | 0.95840 | 1 | 3616 | 4485 | 80.62430 | 0.7822 | 1 | 507 | 85 | 16.765286 | 0.69850 | 0 | 32 | 6.3116371 | 0.7700 | 1 | 41 | 355 | 11.549296 | 0.7760 | 1 | 30 | 355 | 8.4507042 | 0.69980 | 0 | 3507 | 4485 | 78.19398 | 0.9938 | 1 | 2.350677 | 0.4664 | 2 | 1.76808 | 0.15490 | 1 | 0.7822 | 0.7742 | 1 | 3.93810 | 0.9690 | 3 | 8.839057 | 0.6119 | 7 | 4758 | 1319 | 1107 | 398 | 4700 | 8.468085 | 0.1862 | 0 | 144 | 3404 | 4.230317 | 0.3539 | 0 | 111 | 245 | 45.306122 | 0.92700 | 1 | 93 | 862 | 10.78886 | 0.01250 | 0 | 204 | 1107 | 18.42818 | 0.024790 | 0 | 297 | 3527 | 8.420754 | 0.43840 | 0 | 699 | 4724 | 14.796782 | 0.9132 | 1 | 314 | 6.599412 | 0.07503 | 0 | 822 | 17.27617 | 0.2319 | 0 | 292 | 3902.000 | 7.483342 | 0.1088 | 0 | 99 | 662.000 | 14.954683 | 0.5563 | 0 | 433 | 4586 | 9.4417793 | 0.70570 | 0 | 3672 | 4758.000 | 77.17528 | 0.71070 | 0 | 1319 | 392 | 29.719485 | 0.8272 | 1 | 23 | 1.7437453 | 0.6618 | 0 | 146 | 1107 | 13.1887986 | 0.80180 | 1 | 96 | 1107.000 | 8.672087 | 0.73650 | 0 | 950 | 4758 | 19.9663724 | 0.9765 | 1 | 1.916490 | 0.3307 | 1 | 1.67773 | 0.11040 | 0 | 0.71070 | 0.70440 | 0 | 4.00380 | 0.9728 | 3 | 8.308720 | 0.5475 | 4 | NA | NA |
| 02020000101 | 02 | 020 | 000101 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 5475 | 1957 | 1796 | 296 | 5463 | 5.418268 | 0.08172 | 0 | 229 | 2885 | 7.937608 | 0.48540 | 0 | 364 | 1522 | 23.91590 | 0.06363 | 0 | 39 | 274 | 14.23358 | 0.02232 | 0 | 403 | 1796 | 22.43875 | 0.018830 | 0 | 121 | 3476 | 3.481013 | 0.1279 | 0 | 863 | 5853 | 14.74458 | 0.4836 | 0 | 236 | 4.310502 | 0.07411 | 0 | 1614 | 29.479452 | 0.75790 | 1 | 524 | 4028 | 13.008937 | 0.54240 | 0 | 65 | 1496 | 4.344920 | 0.06955 | 0 | 13 | 5202 | 0.2499039 | 0.07262 | 0 | 759 | 5475 | 13.86301 | 0.1072 | 0 | 1957 | 0 | 0.000000 | 0.09395 | 0 | 167 | 8.5334696 | 0.8076 | 1 | 134 | 1796 | 7.461024 | 0.6695 | 0 | 11 | 1796 | 0.6124722 | 0.08007 | 0 | 0 | 5475 | 0.00000 | 0.3743 | 0 | 1.197450 | 0.1505 | 0 | 1.51658 | 0.08466 | 1 | 0.1072 | 0.1061 | 0 | 2.02542 | 0.2761 | 1 | 4.846650 | 0.1061 | 2 | 5772 | 2127 | 1917 | 416 | 5772 | 7.207207 | 0.1396 | 0 | 223 | 2691 | 8.286882 | 0.7821 | 1 | 296 | 1679 | 17.629541 | 0.08891 | 0 | 30 | 238 | 12.60504 | 0.01632 | 0 | 326 | 1917 | 17.00574 | 0.015840 | 0 | 74 | 4011 | 1.844926 | 0.07404 | 0 | 546 | 5733 | 9.523810 | 0.7456 | 0 | 692 | 11.988912 | 0.36010 | 0 | 1481 | 25.65835 | 0.7225 | 0 | 771 | 4252.330 | 18.131237 | 0.7949 | 1 | 94 | 1608.796 | 5.842877 | 0.1503 | 0 | 4 | 5425 | 0.0737327 | 0.05497 | 0 | 989 | 5772.331 | 17.13346 | 0.08922 | 0 | 2127 | 28 | 1.316408 | 0.2585 | 0 | 5 | 0.2350729 | 0.5017 | 0 | 9 | 1917 | 0.4694836 | 0.09085 | 0 | 24 | 1916.584 | 1.252228 | 0.15320 | 0 | 114 | 5772 | 1.9750520 | 0.8251 | 1 | 1.757180 | 0.2809 | 1 | 2.08277 | 0.26400 | 1 | 0.08922 | 0.08843 | 0 | 1.82935 | 0.2038 | 1 | 5.758520 | 0.1870 | 3 | NA | NA |
| 02020000102 | 02 | 020 | 000102 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 4240 | 1923 | 1654 | 286 | 4240 | 6.745283 | 0.12010 | 0 | 198 | 2385 | 8.301887 | 0.51840 | 0 | 275 | 1235 | 22.26721 | 0.04612 | 0 | 248 | 419 | 59.18854 | 0.73210 | 0 | 523 | 1654 | 31.62031 | 0.108600 | 0 | 242 | 2799 | 8.645945 | 0.3645 | 0 | 838 | 4982 | 16.82055 | 0.5669 | 0 | 259 | 6.108491 | 0.17290 | 0 | 1038 | 24.481132 | 0.50340 | 0 | 809 | 3707 | 21.823577 | 0.91630 | 1 | 97 | 1071 | 9.056956 | 0.24130 | 0 | 0 | 4007 | 0.0000000 | 0.02799 | 0 | 955 | 4240 | 22.52358 | 0.2295 | 0 | 1923 | 169 | 8.788351 | 0.54130 | 0 | 147 | 7.6443058 | 0.7936 | 1 | 33 | 1654 | 1.995163 | 0.3402 | 0 | 103 | 1654 | 6.2273277 | 0.58930 | 0 | 0 | 4240 | 0.00000 | 0.3743 | 0 | 1.678500 | 0.2760 | 0 | 1.86189 | 0.19010 | 1 | 0.2295 | 0.2271 | 0 | 2.63870 | 0.5519 | 1 | 6.408590 | 0.2952 | 2 | 4743 | 1975 | 1681 | 633 | 4738 | 13.360067 | 0.3701 | 0 | 75 | 2465 | 3.042596 | 0.1971 | 0 | 383 | 1350 | 28.370370 | 0.47830 | 0 | 122 | 331 | 36.85801 | 0.20770 | 0 | 505 | 1681 | 30.04164 | 0.245400 | 0 | 205 | 3383 | 6.059710 | 0.32020 | 0 | 330 | 4638 | 7.115136 | 0.6017 | 0 | 653 | 13.767658 | 0.46830 | 0 | 1186 | 25.00527 | 0.6899 | 0 | 472 | 3447.726 | 13.690182 | 0.5484 | 0 | 182 | 1469.325 | 12.386640 | 0.4525 | 0 | 0 | 4485 | 0.0000000 | 0.02391 | 0 | 756 | 4743.330 | 15.93817 | 0.07455 | 0 | 1975 | 153 | 7.746835 | 0.4947 | 0 | 156 | 7.8987342 | 0.8173 | 1 | 17 | 1681 | 1.0113028 | 0.15640 | 0 | 0 | 1681.103 | 0.000000 | 0.02249 | 0 | 15 | 4743 | 0.3162555 | 0.4726 | 0 | 1.734500 | 0.2739 | 0 | 2.18301 | 0.31050 | 0 | 0.07455 | 0.07389 | 0 | 1.96349 | 0.2552 | 1 | 5.955550 | 0.2162 | 1 | NA | NA |
| 02020000201 | 02 | 020 | 000201 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 4085 | 1543 | 1532 | 296 | 4085 | 7.246022 | 0.13670 | 0 | 46 | 2089 | 2.202011 | 0.03307 | 0 | 302 | 969 | 31.16615 | 0.19620 | 0 | 187 | 563 | 33.21492 | 0.13830 | 0 | 489 | 1532 | 31.91906 | 0.113500 | 0 | 164 | 2395 | 6.847599 | 0.2875 | 0 | 811 | 3466 | 23.39873 | 0.7707 | 1 | 133 | 3.255814 | 0.03812 | 0 | 1199 | 29.351285 | 0.75230 | 1 | 320 | 2468 | 12.965964 | 0.53850 | 0 | 171 | 1083 | 15.789474 | 0.52510 | 0 | 7 | 3810 | 0.1837270 | 0.06378 | 0 | 743 | 4085 | 18.18849 | 0.1723 | 0 | 1543 | 54 | 3.499676 | 0.37950 | 0 | 7 | 0.4536617 | 0.5183 | 0 | 32 | 1532 | 2.088773 | 0.3498 | 0 | 49 | 1532 | 3.1984334 | 0.36020 | 0 | 0 | 4085 | 0.00000 | 0.3743 | 0 | 1.341470 | 0.1875 | 1 | 1.91780 | 0.21070 | 1 | 0.1723 | 0.1705 | 0 | 1.98210 | 0.2583 | 0 | 5.413670 | 0.1694 | 2 | 4707 | 1946 | 1835 | 706 | 4707 | 14.998938 | 0.4258 | 0 | 88 | 2269 | 3.878360 | 0.3073 | 0 | 219 | 793 | 27.616646 | 0.44320 | 0 | 527 | 1042 | 50.57582 | 0.53120 | 0 | 746 | 1835 | 40.65395 | 0.607400 | 0 | 194 | 2805 | 6.916221 | 0.36480 | 0 | 464 | 4274 | 10.856341 | 0.8018 | 1 | 257 | 5.459953 | 0.04652 | 0 | 1279 | 27.17230 | 0.7970 | 1 | 390 | 2999.274 | 13.003148 | 0.4994 | 0 | 72 | 1222.675 | 5.888728 | 0.1525 | 0 | 26 | 4201 | 0.6189003 | 0.13850 | 0 | 1282 | 4706.670 | 27.23794 | 0.21200 | 0 | 1946 | 76 | 3.905447 | 0.3758 | 0 | 2 | 0.1027749 | 0.4966 | 0 | 96 | 1835 | 5.2316076 | 0.52940 | 0 | 39 | 1834.897 | 2.125459 | 0.25860 | 0 | 0 | 4707 | 0.0000000 | 0.1370 | 0 | 2.507100 | 0.5058 | 1 | 1.63392 | 0.09856 | 1 | 0.21200 | 0.21010 | 0 | 1.79740 | 0.1921 | 0 | 6.150420 | 0.2432 | 2 | 1 | 270385 |
svi_national_lihtc10 <- left_join(svi_national, lihtc_projects10, join_by("GEOID_2010_trt" == "fips2010"))
svi_national_lihtc10 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | pre10_lihtc_project_cnt | pre10_lihtc_project_dollars |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 01001020100 | 01 | 001 | 020100 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 1809 | 771 | 696 | 297 | 1809 | 16.41791 | 0.3871 | 0 | 36 | 889 | 4.049494 | 0.1790 | 0 | 127 | 598 | 21.23746 | 0.20770 | 0 | 47 | 98 | 47.95918 | 0.5767 | 0 | 174 | 696 | 25.00000 | 0.18790 | 0 | 196 | 1242 | 15.780998 | 0.6093 | 0 | 186 | 1759 | 10.574190 | 0.3790 | 0 | 222 | 12.271973 | 0.4876 | 0 | 445 | 24.59923 | 0.5473 | 0 | 298 | 1335 | 22.32210 | 0.8454 | 1 | 27 | 545 | 4.954128 | 0.09275 | 0 | 36 | 1705 | 2.1114370 | 0.59040 | 0 | 385 | 1809 | 21.282477 | 0.4524 | 0 | 771 | 0 | 0.0000000 | 0.1224 | 0 | 92 | 11.9325551 | 0.8005 | 1 | 0 | 696 | 0.0000000 | 0.1238 | 0 | 50 | 696 | 7.183908 | 0.6134 | 0 | 0 | 1809 | 0 | 0.364 | 0 | 1.74230 | 0.28200 | 0 | 2.56345 | 0.5296 | 1 | 0.4524 | 0.4482 | 0 | 2.0241 | 0.2519 | 1 | 6.78225 | 0.3278 | 2 | 1941 | 710 | 693 | 352 | 1941 | 18.13498 | 0.4630 | 0 | 18 | 852 | 2.112676 | 0.15070 | 0 | 81 | 507 | 15.976331 | 0.26320 | 0 | 63 | 186 | 33.87097 | 0.2913 | 0 | 144 | 693 | 20.77922 | 0.2230 | 0 | 187 | 1309 | 14.285714 | 0.6928 | 0 | 187 | 1941 | 9.634209 | 0.6617 | 0 | 295 | 15.19835 | 0.4601 | 0 | 415 | 21.38073 | 0.4681 | 0 | 391 | 1526 | 25.62254 | 0.9011 | 1 | 58 | 555 | 10.45045 | 0.3451 | 0 | 0 | 1843 | 0.0000000 | 0.09479 | 0 | 437 | 1941 | 22.51417 | 0.3902 | 0 | 710 | 0 | 0.0000000 | 0.1079 | 0 | 88 | 12.3943662 | 0.8263 | 1 | 0 | 693 | 0.0000000 | 0.09796 | 0 | 10 | 693 | 1.443001 | 0.1643 | 0 | 0 | 1941 | 0.000000 | 0.1831 | 0 | 2.19120 | 0.4084 | 0 | 2.26919 | 0.3503 | 1 | 0.3902 | 0.3869 | 0 | 1.37956 | 0.07216 | 1 | 6.23015 | 0.2314 | 2 | NA | NA |
| 01001020200 | 01 | 001 | 020200 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2020 | 816 | 730 | 495 | 1992 | 24.84940 | 0.5954 | 0 | 68 | 834 | 8.153477 | 0.5754 | 0 | 49 | 439 | 11.16173 | 0.02067 | 0 | 105 | 291 | 36.08247 | 0.3019 | 0 | 154 | 730 | 21.09589 | 0.09312 | 0 | 339 | 1265 | 26.798419 | 0.8392 | 1 | 313 | 2012 | 15.556660 | 0.6000 | 0 | 204 | 10.099010 | 0.3419 | 0 | 597 | 29.55446 | 0.8192 | 1 | 359 | 1515 | 23.69637 | 0.8791 | 1 | 132 | 456 | 28.947368 | 0.83510 | 1 | 15 | 1890 | 0.7936508 | 0.40130 | 0 | 1243 | 2020 | 61.534653 | 0.7781 | 1 | 816 | 0 | 0.0000000 | 0.1224 | 0 | 34 | 4.1666667 | 0.6664 | 0 | 13 | 730 | 1.7808219 | 0.5406 | 0 | 115 | 730 | 15.753425 | 0.8382 | 1 | 0 | 2020 | 0 | 0.364 | 0 | 2.70312 | 0.56650 | 1 | 3.27660 | 0.8614 | 3 | 0.7781 | 0.7709 | 1 | 2.5316 | 0.5047 | 1 | 9.28942 | 0.6832 | 6 | 1757 | 720 | 573 | 384 | 1511 | 25.41363 | 0.6427 | 0 | 29 | 717 | 4.044630 | 0.41320 | 0 | 33 | 392 | 8.418367 | 0.03542 | 0 | 116 | 181 | 64.08840 | 0.9086 | 1 | 149 | 573 | 26.00349 | 0.4041 | 0 | 139 | 1313 | 10.586443 | 0.5601 | 0 | 91 | 1533 | 5.936073 | 0.4343 | 0 | 284 | 16.16392 | 0.5169 | 0 | 325 | 18.49744 | 0.2851 | 0 | 164 | 1208 | 13.57616 | 0.4127 | 0 | 42 | 359 | 11.69916 | 0.3998 | 0 | 0 | 1651 | 0.0000000 | 0.09479 | 0 | 1116 | 1757 | 63.51736 | 0.7591 | 1 | 720 | 3 | 0.4166667 | 0.2470 | 0 | 5 | 0.6944444 | 0.5106 | 0 | 9 | 573 | 1.5706806 | 0.46880 | 0 | 57 | 573 | 9.947644 | 0.7317 | 0 | 212 | 1757 | 12.066022 | 0.9549 | 1 | 2.45440 | 0.4888 | 0 | 1.70929 | 0.1025 | 0 | 0.7591 | 0.7527 | 1 | 2.91300 | 0.68620 | 1 | 7.83579 | 0.4802 | 2 | NA | NA |
| 01001020300 | 01 | 001 | 020300 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3543 | 1403 | 1287 | 656 | 3533 | 18.56779 | 0.4443 | 0 | 93 | 1552 | 5.992268 | 0.3724 | 0 | 273 | 957 | 28.52665 | 0.45780 | 0 | 178 | 330 | 53.93939 | 0.7152 | 0 | 451 | 1287 | 35.04274 | 0.49930 | 0 | 346 | 2260 | 15.309734 | 0.5950 | 0 | 252 | 3102 | 8.123791 | 0.2596 | 0 | 487 | 13.745413 | 0.5868 | 0 | 998 | 28.16822 | 0.7606 | 1 | 371 | 2224 | 16.68165 | 0.6266 | 0 | 126 | 913 | 13.800657 | 0.46350 | 0 | 0 | 3365 | 0.0000000 | 0.09298 | 0 | 637 | 3543 | 17.979114 | 0.4049 | 0 | 1403 | 10 | 0.7127584 | 0.3015 | 0 | 2 | 0.1425517 | 0.4407 | 0 | 0 | 1287 | 0.0000000 | 0.1238 | 0 | 101 | 1287 | 7.847708 | 0.6443 | 0 | 0 | 3543 | 0 | 0.364 | 0 | 2.17060 | 0.41010 | 0 | 2.53048 | 0.5116 | 1 | 0.4049 | 0.4011 | 0 | 1.8743 | 0.1942 | 0 | 6.98028 | 0.3576 | 1 | 3694 | 1464 | 1351 | 842 | 3694 | 22.79372 | 0.5833 | 0 | 53 | 1994 | 2.657974 | 0.22050 | 0 | 117 | 967 | 12.099276 | 0.11370 | 0 | 147 | 384 | 38.28125 | 0.3856 | 0 | 264 | 1351 | 19.54108 | 0.1827 | 0 | 317 | 2477 | 12.797739 | 0.6460 | 0 | 127 | 3673 | 3.457664 | 0.2308 | 0 | 464 | 12.56091 | 0.3088 | 0 | 929 | 25.14889 | 0.7080 | 0 | 473 | 2744 | 17.23761 | 0.6211 | 0 | 263 | 975 | 26.97436 | 0.8234 | 1 | 128 | 3586 | 3.5694367 | 0.70770 | 0 | 1331 | 3694 | 36.03140 | 0.5515 | 0 | 1464 | 26 | 1.7759563 | 0.3675 | 0 | 14 | 0.9562842 | 0.5389 | 0 | 35 | 1351 | 2.5906736 | 0.60550 | 0 | 42 | 1351 | 3.108808 | 0.3415 | 0 | 0 | 3694 | 0.000000 | 0.1831 | 0 | 1.86330 | 0.3063 | 0 | 3.16900 | 0.8380 | 1 | 0.5515 | 0.5468 | 0 | 2.03650 | 0.26830 | 0 | 7.62030 | 0.4460 | 1 | 2 | 216593 |
| 01001020400 | 01 | 001 | 020400 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 4840 | 1957 | 1839 | 501 | 4840 | 10.35124 | 0.2177 | 0 | 101 | 2129 | 4.744011 | 0.2447 | 0 | 310 | 1549 | 20.01291 | 0.17080 | 0 | 89 | 290 | 30.68966 | 0.2044 | 0 | 399 | 1839 | 21.69657 | 0.10540 | 0 | 274 | 3280 | 8.353658 | 0.3205 | 0 | 399 | 4293 | 9.294200 | 0.3171 | 0 | 955 | 19.731405 | 0.8643 | 1 | 1195 | 24.69008 | 0.5530 | 0 | 625 | 3328 | 18.78005 | 0.7233 | 0 | 152 | 1374 | 11.062591 | 0.34710 | 0 | 10 | 4537 | 0.2204100 | 0.22560 | 0 | 297 | 4840 | 6.136364 | 0.1647 | 0 | 1957 | 33 | 1.6862545 | 0.3843 | 0 | 25 | 1.2774655 | 0.5516 | 0 | 14 | 1839 | 0.7612833 | 0.3564 | 0 | 19 | 1839 | 1.033170 | 0.1127 | 0 | 0 | 4840 | 0 | 0.364 | 0 | 1.20540 | 0.13470 | 0 | 2.71330 | 0.6129 | 1 | 0.1647 | 0.1632 | 0 | 1.7690 | 0.1591 | 0 | 5.85240 | 0.1954 | 1 | 3539 | 1741 | 1636 | 503 | 3539 | 14.21305 | 0.3472 | 0 | 39 | 1658 | 2.352232 | 0.17990 | 0 | 219 | 1290 | 16.976744 | 0.30880 | 0 | 74 | 346 | 21.38728 | 0.1037 | 0 | 293 | 1636 | 17.90954 | 0.1333 | 0 | 173 | 2775 | 6.234234 | 0.3351 | 0 | 169 | 3529 | 4.788892 | 0.3448 | 0 | 969 | 27.38062 | 0.9225 | 1 | 510 | 14.41085 | 0.1208 | 0 | 670 | 3019 | 22.19278 | 0.8194 | 1 | 148 | 1137 | 13.01671 | 0.4541 | 0 | 89 | 3409 | 2.6107363 | 0.64690 | 0 | 454 | 3539 | 12.82848 | 0.2364 | 0 | 1741 | 143 | 8.2136703 | 0.6028 | 0 | 0 | 0.0000000 | 0.2186 | 0 | 10 | 1636 | 0.6112469 | 0.28340 | 0 | 72 | 1636 | 4.400978 | 0.4538 | 0 | 0 | 3539 | 0.000000 | 0.1831 | 0 | 1.34030 | 0.1575 | 0 | 2.96370 | 0.7496 | 2 | 0.2364 | 0.2344 | 0 | 1.74170 | 0.16270 | 0 | 6.28210 | 0.2389 | 2 | NA | NA |
| 01001020500 | 01 | 001 | 020500 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 9938 | 3969 | 3741 | 1096 | 9938 | 11.02838 | 0.2364 | 0 | 188 | 4937 | 3.807981 | 0.1577 | 0 | 426 | 2406 | 17.70574 | 0.11050 | 0 | 528 | 1335 | 39.55056 | 0.3753 | 0 | 954 | 3741 | 25.50120 | 0.20140 | 0 | 293 | 5983 | 4.897209 | 0.1655 | 0 | 740 | 10110 | 7.319486 | 0.2211 | 0 | 837 | 8.422218 | 0.2408 | 0 | 3012 | 30.30791 | 0.8455 | 1 | 759 | 7155 | 10.60797 | 0.2668 | 0 | 476 | 2529 | 18.821669 | 0.63540 | 0 | 78 | 9297 | 0.8389803 | 0.41110 | 0 | 1970 | 9938 | 19.822902 | 0.4330 | 0 | 3969 | 306 | 7.7097506 | 0.6153 | 0 | 0 | 0.0000000 | 0.2198 | 0 | 7 | 3741 | 0.1871157 | 0.2535 | 0 | 223 | 3741 | 5.960973 | 0.5483 | 0 | 0 | 9938 | 0 | 0.364 | 0 | 0.98210 | 0.08468 | 0 | 2.39960 | 0.4381 | 1 | 0.4330 | 0.4290 | 0 | 2.0009 | 0.2430 | 0 | 5.81560 | 0.1905 | 1 | 10674 | 4504 | 4424 | 1626 | 10509 | 15.47245 | 0.3851 | 0 | 81 | 5048 | 1.604596 | 0.09431 | 0 | 321 | 2299 | 13.962592 | 0.17970 | 0 | 711 | 2125 | 33.45882 | 0.2836 | 0 | 1032 | 4424 | 23.32731 | 0.3109 | 0 | 531 | 6816 | 7.790493 | 0.4251 | 0 | 301 | 10046 | 2.996217 | 0.1894 | 0 | 1613 | 15.11149 | 0.4553 | 0 | 2765 | 25.90407 | 0.7494 | 0 | 1124 | 7281 | 15.43744 | 0.5253 | 0 | 342 | 2912 | 11.74451 | 0.4019 | 0 | 52 | 9920 | 0.5241935 | 0.35230 | 0 | 2603 | 10674 | 24.38636 | 0.4160 | 0 | 4504 | 703 | 15.6083481 | 0.7378 | 0 | 29 | 0.6438721 | 0.5037 | 0 | 37 | 4424 | 0.8363472 | 0.33420 | 0 | 207 | 4424 | 4.679023 | 0.4754 | 0 | 176 | 10674 | 1.648866 | 0.7598 | 1 | 1.40481 | 0.1743 | 0 | 2.48420 | 0.4802 | 0 | 0.4160 | 0.4125 | 0 | 2.81090 | 0.63730 | 1 | 7.11591 | 0.3654 | 1 | 5 | 2250459 |
| 01001020600 | 01 | 001 | 020600 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3402 | 1456 | 1308 | 735 | 3402 | 21.60494 | 0.5199 | 0 | 134 | 1720 | 7.790698 | 0.5436 | 0 | 242 | 1032 | 23.44961 | 0.28010 | 0 | 62 | 276 | 22.46377 | 0.1035 | 0 | 304 | 1308 | 23.24159 | 0.14070 | 0 | 301 | 2151 | 13.993491 | 0.5510 | 0 | 355 | 3445 | 10.304790 | 0.3656 | 0 | 386 | 11.346267 | 0.4232 | 0 | 931 | 27.36626 | 0.7200 | 0 | 440 | 2439 | 18.04018 | 0.6912 | 0 | 143 | 924 | 15.476190 | 0.52900 | 0 | 4 | 3254 | 0.1229256 | 0.19840 | 0 | 723 | 3402 | 21.252205 | 0.4519 | 0 | 1456 | 18 | 1.2362637 | 0.3507 | 0 | 433 | 29.7390110 | 0.9468 | 1 | 16 | 1308 | 1.2232416 | 0.4493 | 0 | 28 | 1308 | 2.140673 | 0.2298 | 0 | 0 | 3402 | 0 | 0.364 | 0 | 2.12080 | 0.39510 | 0 | 2.56180 | 0.5288 | 0 | 0.4519 | 0.4477 | 0 | 2.3406 | 0.4048 | 1 | 7.47510 | 0.4314 | 1 | 3536 | 1464 | 1330 | 1279 | 3523 | 36.30429 | 0.8215 | 1 | 34 | 1223 | 2.780049 | 0.23780 | 0 | 321 | 1111 | 28.892889 | 0.75870 | 1 | 67 | 219 | 30.59361 | 0.2305 | 0 | 388 | 1330 | 29.17293 | 0.5075 | 0 | 306 | 2380 | 12.857143 | 0.6480 | 0 | 415 | 3496 | 11.870709 | 0.7535 | 1 | 547 | 15.46946 | 0.4760 | 0 | 982 | 27.77149 | 0.8327 | 1 | 729 | 2514 | 28.99761 | 0.9488 | 1 | 95 | 880 | 10.79545 | 0.3601 | 0 | 0 | 3394 | 0.0000000 | 0.09479 | 0 | 985 | 3536 | 27.85633 | 0.4608 | 0 | 1464 | 0 | 0.0000000 | 0.1079 | 0 | 364 | 24.8633880 | 0.9300 | 1 | 0 | 1330 | 0.0000000 | 0.09796 | 0 | 17 | 1330 | 1.278196 | 0.1463 | 0 | 0 | 3536 | 0.000000 | 0.1831 | 0 | 2.96830 | 0.6434 | 2 | 2.71239 | 0.6156 | 2 | 0.4608 | 0.4569 | 0 | 1.46526 | 0.08976 | 1 | 7.60675 | 0.4440 | 5 | NA | NA |
svi_divisional_lihtc20 <- left_join(svi_divisional_lihtc10, lihtc_projects20, join_by("GEOID_2010_trt" == "fips2010"))
svi_divisional_lihtc20 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | pre10_lihtc_project_cnt | pre10_lihtc_project_dollars | post10_lihtc_project_cnt | post10_lihtc_project_dollars |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 02013000100 | 02 | 013 | 000100 | AK | Alaska | Aleutians East Borough | 4 | West Region | 9 | Pacific Division | 3703 | 474 | 267 | 1212 | 3695 | 32.801082 | 0.75700 | 1 | 111 | 3163 | 3.509327 | 0.08691 | 0 | 25 | 158 | 15.82278 | 0.01337 | 0 | 17 | 109 | 15.59633 | 0.02605 | 0 | 42 | 267 | 15.73034 | 0.004754 | 0 | 1082 | 3017 | 35.863441 | 0.8542 | 1 | 2060 | 3112 | 66.19537 | 0.9999 | 1 | 127 | 3.429652 | 0.04240 | 0 | 315 | 8.506616 | 0.03961 | 0 | 182 | 2849 | 6.388206 | 0.07775 | 0 | 50 | 165 | 30.303030 | 0.88350 | 1 | 1070 | 3617 | 29.5825270 | 0.93700 | 1 | 3492 | 3703 | 94.30192 | 0.9141 | 1 | 474 | 8 | 1.687764 | 0.29250 | 0 | 42 | 8.8607595 | 0.8128 | 1 | 7 | 267 | 2.621723 | 0.4003 | 0 | 77 | 267 | 28.8389513 | 0.96850 | 1 | 2969 | 3703 | 80.17823 | 0.9940 | 1 | 2.702764 | 0.5611 | 3 | 1.98026 | 0.23800 | 2 | 0.9141 | 0.9047 | 1 | 3.46810 | 0.8902 | 3 | 9.065224 | 0.6397 | 9 | 3389 | 1199 | 988 | 698 | 3379 | 20.656999 | 0.5925 | 0 | 86 | 2414 | 3.562552 | 0.2665 | 0 | 67 | 607 | 11.037891 | 0.01803 | 0 | 74 | 381 | 19.42257 | 0.04067 | 0 | 141 | 988 | 14.27126 | 0.006988 | 0 | 354 | 2646 | 13.378685 | 0.61070 | 0 | 1345 | 3384 | 39.745863 | 0.9997 | 1 | 381 | 11.242254 | 0.31390 | 0 | 443 | 13.07170 | 0.0988 | 0 | 339 | 2941.000 | 11.526692 | 0.3860 | 0 | 135 | 593.000 | 22.765599 | 0.7920 | 1 | 334 | 3276 | 10.1953602 | 0.72620 | 0 | 2939 | 3389.000 | 86.72175 | 0.81100 | 1 | 1199 | 38 | 3.169308 | 0.3474 | 0 | 69 | 5.7547957 | 0.7806 | 1 | 30 | 988 | 3.0364372 | 0.36010 | 0 | 220 | 988.000 | 22.267207 | 0.95270 | 1 | 1035 | 3389 | 30.5399823 | 0.9843 | 1 | 2.476388 | 0.4947 | 1 | 2.31690 | 0.37850 | 1 | 0.81100 | 0.80380 | 1 | 3.42510 | 0.8683 | 3 | 9.029388 | 0.6419 | 6 | NA | NA | NA | NA |
| 02016000100 | 02 | 016 | 000100 | AK | Alaska | Aleutians West Census Area | 4 | West Region | 9 | Pacific Division | 1774 | 1056 | 166 | 328 | 1231 | 26.645004 | 0.65530 | 0 | 15 | 1370 | 1.094890 | 0.01369 | 0 | 25 | 95 | 26.31579 | 0.09653 | 0 | 16 | 71 | 22.53521 | 0.05099 | 0 | 41 | 166 | 24.69880 | 0.029080 | 0 | 207 | 1330 | 15.563910 | 0.5839 | 0 | 484 | 973 | 49.74306 | 0.9952 | 1 | 53 | 2.987599 | 0.03180 | 0 | 182 | 10.259301 | 0.05188 | 0 | 147 | 747 | 19.678715 | 0.86420 | 1 | 19 | 96 | 19.791667 | 0.66060 | 0 | 79 | 1718 | 4.5983702 | 0.46890 | 0 | 1154 | 1774 | 65.05073 | 0.6522 | 0 | 1056 | 22 | 2.083333 | 0.31610 | 0 | 0 | 0.0000000 | 0.2497 | 0 | 10 | 166 | 6.024096 | 0.6154 | 0 | 84 | 166 | 50.6024096 | 0.99320 | 1 | 1324 | 1774 | 74.63360 | 0.9935 | 1 | 2.277170 | 0.4443 | 1 | 2.07738 | 0.27780 | 1 | 0.6522 | 0.6454 | 0 | 3.16790 | 0.7874 | 2 | 8.174650 | 0.5311 | 4 | 950 | 694 | 199 | 218 | 719 | 30.319889 | 0.7848 | 1 | 15 | 560 | 2.678571 | 0.1560 | 0 | 11 | 117 | 9.401709 | 0.01305 | 0 | 14 | 82 | 17.07317 | 0.03088 | 0 | 25 | 199 | 12.56281 | 0.003541 | 0 | 48 | 681 | 7.048458 | 0.37250 | 0 | 238 | 721 | 33.009709 | 0.9989 | 1 | 116 | 12.210526 | 0.37310 | 0 | 195 | 20.52632 | 0.4153 | 0 | 113 | 526.000 | 21.482890 | 0.8931 | 1 | 31 | 98.000 | 31.632653 | 0.9318 | 1 | 17 | 900 | 1.8888889 | 0.29830 | 0 | 713 | 950.000 | 75.05263 | 0.69000 | 0 | 694 | 17 | 2.449568 | 0.3163 | 0 | 0 | 0.0000000 | 0.2466 | 0 | 7 | 199 | 3.5175879 | 0.39980 | 0 | 68 | 199.000 | 34.170854 | 0.98260 | 1 | 274 | 950 | 28.8421053 | 0.9832 | 1 | 2.315741 | 0.4476 | 2 | 2.91160 | 0.70420 | 2 | 0.69000 | 0.68390 | 0 | 2.92850 | 0.6794 | 2 | 8.845841 | 0.6188 | 6 | NA | NA | NA | NA |
| 02016000200 | 02 | 016 | 000200 | AK | Alaska | Aleutians West Census Area | 4 | West Region | 9 | Pacific Division | 4485 | 507 | 355 | 1315 | 4469 | 29.424927 | 0.70570 | 0 | 87 | 3859 | 2.254470 | 0.03381 | 0 | 20 | 94 | 21.27660 | 0.03822 | 0 | 35 | 261 | 13.40996 | 0.02120 | 0 | 55 | 355 | 15.49296 | 0.004567 | 0 | 1292 | 3728 | 34.656652 | 0.8445 | 1 | 981 | 4256 | 23.04981 | 0.7621 | 1 | 186 | 4.147157 | 0.06676 | 0 | 384 | 8.561873 | 0.03989 | 0 | 235 | 3656 | 6.427790 | 0.07933 | 0 | 38 | 204 | 18.627451 | 0.62370 | 0 | 1458 | 4397 | 33.1589720 | 0.95840 | 1 | 3616 | 4485 | 80.62430 | 0.7822 | 1 | 507 | 85 | 16.765286 | 0.69850 | 0 | 32 | 6.3116371 | 0.7700 | 1 | 41 | 355 | 11.549296 | 0.7760 | 1 | 30 | 355 | 8.4507042 | 0.69980 | 0 | 3507 | 4485 | 78.19398 | 0.9938 | 1 | 2.350677 | 0.4664 | 2 | 1.76808 | 0.15490 | 1 | 0.7822 | 0.7742 | 1 | 3.93810 | 0.9690 | 3 | 8.839057 | 0.6119 | 7 | 4758 | 1319 | 1107 | 398 | 4700 | 8.468085 | 0.1862 | 0 | 144 | 3404 | 4.230317 | 0.3539 | 0 | 111 | 245 | 45.306122 | 0.92700 | 1 | 93 | 862 | 10.78886 | 0.01250 | 0 | 204 | 1107 | 18.42818 | 0.024790 | 0 | 297 | 3527 | 8.420754 | 0.43840 | 0 | 699 | 4724 | 14.796782 | 0.9132 | 1 | 314 | 6.599412 | 0.07503 | 0 | 822 | 17.27617 | 0.2319 | 0 | 292 | 3902.000 | 7.483342 | 0.1088 | 0 | 99 | 662.000 | 14.954683 | 0.5563 | 0 | 433 | 4586 | 9.4417793 | 0.70570 | 0 | 3672 | 4758.000 | 77.17528 | 0.71070 | 0 | 1319 | 392 | 29.719485 | 0.8272 | 1 | 23 | 1.7437453 | 0.6618 | 0 | 146 | 1107 | 13.1887986 | 0.80180 | 1 | 96 | 1107.000 | 8.672087 | 0.73650 | 0 | 950 | 4758 | 19.9663724 | 0.9765 | 1 | 1.916490 | 0.3307 | 1 | 1.67773 | 0.11040 | 0 | 0.71070 | 0.70440 | 0 | 4.00380 | 0.9728 | 3 | 8.308720 | 0.5475 | 4 | NA | NA | NA | NA |
| 02020000101 | 02 | 020 | 000101 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 5475 | 1957 | 1796 | 296 | 5463 | 5.418268 | 0.08172 | 0 | 229 | 2885 | 7.937608 | 0.48540 | 0 | 364 | 1522 | 23.91590 | 0.06363 | 0 | 39 | 274 | 14.23358 | 0.02232 | 0 | 403 | 1796 | 22.43875 | 0.018830 | 0 | 121 | 3476 | 3.481013 | 0.1279 | 0 | 863 | 5853 | 14.74458 | 0.4836 | 0 | 236 | 4.310502 | 0.07411 | 0 | 1614 | 29.479452 | 0.75790 | 1 | 524 | 4028 | 13.008937 | 0.54240 | 0 | 65 | 1496 | 4.344920 | 0.06955 | 0 | 13 | 5202 | 0.2499039 | 0.07262 | 0 | 759 | 5475 | 13.86301 | 0.1072 | 0 | 1957 | 0 | 0.000000 | 0.09395 | 0 | 167 | 8.5334696 | 0.8076 | 1 | 134 | 1796 | 7.461024 | 0.6695 | 0 | 11 | 1796 | 0.6124722 | 0.08007 | 0 | 0 | 5475 | 0.00000 | 0.3743 | 0 | 1.197450 | 0.1505 | 0 | 1.51658 | 0.08466 | 1 | 0.1072 | 0.1061 | 0 | 2.02542 | 0.2761 | 1 | 4.846650 | 0.1061 | 2 | 5772 | 2127 | 1917 | 416 | 5772 | 7.207207 | 0.1396 | 0 | 223 | 2691 | 8.286882 | 0.7821 | 1 | 296 | 1679 | 17.629541 | 0.08891 | 0 | 30 | 238 | 12.60504 | 0.01632 | 0 | 326 | 1917 | 17.00574 | 0.015840 | 0 | 74 | 4011 | 1.844926 | 0.07404 | 0 | 546 | 5733 | 9.523810 | 0.7456 | 0 | 692 | 11.988912 | 0.36010 | 0 | 1481 | 25.65835 | 0.7225 | 0 | 771 | 4252.330 | 18.131237 | 0.7949 | 1 | 94 | 1608.796 | 5.842877 | 0.1503 | 0 | 4 | 5425 | 0.0737327 | 0.05497 | 0 | 989 | 5772.331 | 17.13346 | 0.08922 | 0 | 2127 | 28 | 1.316408 | 0.2585 | 0 | 5 | 0.2350729 | 0.5017 | 0 | 9 | 1917 | 0.4694836 | 0.09085 | 0 | 24 | 1916.584 | 1.252228 | 0.15320 | 0 | 114 | 5772 | 1.9750520 | 0.8251 | 1 | 1.757180 | 0.2809 | 1 | 2.08277 | 0.26400 | 1 | 0.08922 | 0.08843 | 0 | 1.82935 | 0.2038 | 1 | 5.758520 | 0.1870 | 3 | NA | NA | NA | NA |
| 02020000102 | 02 | 020 | 000102 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 4240 | 1923 | 1654 | 286 | 4240 | 6.745283 | 0.12010 | 0 | 198 | 2385 | 8.301887 | 0.51840 | 0 | 275 | 1235 | 22.26721 | 0.04612 | 0 | 248 | 419 | 59.18854 | 0.73210 | 0 | 523 | 1654 | 31.62031 | 0.108600 | 0 | 242 | 2799 | 8.645945 | 0.3645 | 0 | 838 | 4982 | 16.82055 | 0.5669 | 0 | 259 | 6.108491 | 0.17290 | 0 | 1038 | 24.481132 | 0.50340 | 0 | 809 | 3707 | 21.823577 | 0.91630 | 1 | 97 | 1071 | 9.056956 | 0.24130 | 0 | 0 | 4007 | 0.0000000 | 0.02799 | 0 | 955 | 4240 | 22.52358 | 0.2295 | 0 | 1923 | 169 | 8.788351 | 0.54130 | 0 | 147 | 7.6443058 | 0.7936 | 1 | 33 | 1654 | 1.995163 | 0.3402 | 0 | 103 | 1654 | 6.2273277 | 0.58930 | 0 | 0 | 4240 | 0.00000 | 0.3743 | 0 | 1.678500 | 0.2760 | 0 | 1.86189 | 0.19010 | 1 | 0.2295 | 0.2271 | 0 | 2.63870 | 0.5519 | 1 | 6.408590 | 0.2952 | 2 | 4743 | 1975 | 1681 | 633 | 4738 | 13.360067 | 0.3701 | 0 | 75 | 2465 | 3.042596 | 0.1971 | 0 | 383 | 1350 | 28.370370 | 0.47830 | 0 | 122 | 331 | 36.85801 | 0.20770 | 0 | 505 | 1681 | 30.04164 | 0.245400 | 0 | 205 | 3383 | 6.059710 | 0.32020 | 0 | 330 | 4638 | 7.115136 | 0.6017 | 0 | 653 | 13.767658 | 0.46830 | 0 | 1186 | 25.00527 | 0.6899 | 0 | 472 | 3447.726 | 13.690182 | 0.5484 | 0 | 182 | 1469.325 | 12.386640 | 0.4525 | 0 | 0 | 4485 | 0.0000000 | 0.02391 | 0 | 756 | 4743.330 | 15.93817 | 0.07455 | 0 | 1975 | 153 | 7.746835 | 0.4947 | 0 | 156 | 7.8987342 | 0.8173 | 1 | 17 | 1681 | 1.0113028 | 0.15640 | 0 | 0 | 1681.103 | 0.000000 | 0.02249 | 0 | 15 | 4743 | 0.3162555 | 0.4726 | 0 | 1.734500 | 0.2739 | 0 | 2.18301 | 0.31050 | 0 | 0.07455 | 0.07389 | 0 | 1.96349 | 0.2552 | 1 | 5.955550 | 0.2162 | 1 | NA | NA | NA | NA |
| 02020000201 | 02 | 020 | 000201 | AK | Alaska | Anchorage Municipality | 4 | West Region | 9 | Pacific Division | 4085 | 1543 | 1532 | 296 | 4085 | 7.246022 | 0.13670 | 0 | 46 | 2089 | 2.202011 | 0.03307 | 0 | 302 | 969 | 31.16615 | 0.19620 | 0 | 187 | 563 | 33.21492 | 0.13830 | 0 | 489 | 1532 | 31.91906 | 0.113500 | 0 | 164 | 2395 | 6.847599 | 0.2875 | 0 | 811 | 3466 | 23.39873 | 0.7707 | 1 | 133 | 3.255814 | 0.03812 | 0 | 1199 | 29.351285 | 0.75230 | 1 | 320 | 2468 | 12.965964 | 0.53850 | 0 | 171 | 1083 | 15.789474 | 0.52510 | 0 | 7 | 3810 | 0.1837270 | 0.06378 | 0 | 743 | 4085 | 18.18849 | 0.1723 | 0 | 1543 | 54 | 3.499676 | 0.37950 | 0 | 7 | 0.4536617 | 0.5183 | 0 | 32 | 1532 | 2.088773 | 0.3498 | 0 | 49 | 1532 | 3.1984334 | 0.36020 | 0 | 0 | 4085 | 0.00000 | 0.3743 | 0 | 1.341470 | 0.1875 | 1 | 1.91780 | 0.21070 | 1 | 0.1723 | 0.1705 | 0 | 1.98210 | 0.2583 | 0 | 5.413670 | 0.1694 | 2 | 4707 | 1946 | 1835 | 706 | 4707 | 14.998938 | 0.4258 | 0 | 88 | 2269 | 3.878360 | 0.3073 | 0 | 219 | 793 | 27.616646 | 0.44320 | 0 | 527 | 1042 | 50.57582 | 0.53120 | 0 | 746 | 1835 | 40.65395 | 0.607400 | 0 | 194 | 2805 | 6.916221 | 0.36480 | 0 | 464 | 4274 | 10.856341 | 0.8018 | 1 | 257 | 5.459953 | 0.04652 | 0 | 1279 | 27.17230 | 0.7970 | 1 | 390 | 2999.274 | 13.003148 | 0.4994 | 0 | 72 | 1222.675 | 5.888728 | 0.1525 | 0 | 26 | 4201 | 0.6189003 | 0.13850 | 0 | 1282 | 4706.670 | 27.23794 | 0.21200 | 0 | 1946 | 76 | 3.905447 | 0.3758 | 0 | 2 | 0.1027749 | 0.4966 | 0 | 96 | 1835 | 5.2316076 | 0.52940 | 0 | 39 | 1834.897 | 2.125459 | 0.25860 | 0 | 0 | 4707 | 0.0000000 | 0.1370 | 0 | 2.507100 | 0.5058 | 1 | 1.63392 | 0.09856 | 1 | 0.21200 | 0.21010 | 0 | 1.79740 | 0.1921 | 0 | 6.150420 | 0.2432 | 2 | 1 | 270385 | NA | NA |
svi_national_lihtc20 <- left_join(svi_national_lihtc10, lihtc_projects20, join_by("GEOID_2010_trt" == "fips2010"))
svi_national_lihtc20 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | pre10_lihtc_project_cnt | pre10_lihtc_project_dollars | post10_lihtc_project_cnt | post10_lihtc_project_dollars |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 01001020100 | 01 | 001 | 020100 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 1809 | 771 | 696 | 297 | 1809 | 16.41791 | 0.3871 | 0 | 36 | 889 | 4.049494 | 0.1790 | 0 | 127 | 598 | 21.23746 | 0.20770 | 0 | 47 | 98 | 47.95918 | 0.5767 | 0 | 174 | 696 | 25.00000 | 0.18790 | 0 | 196 | 1242 | 15.780998 | 0.6093 | 0 | 186 | 1759 | 10.574190 | 0.3790 | 0 | 222 | 12.271973 | 0.4876 | 0 | 445 | 24.59923 | 0.5473 | 0 | 298 | 1335 | 22.32210 | 0.8454 | 1 | 27 | 545 | 4.954128 | 0.09275 | 0 | 36 | 1705 | 2.1114370 | 0.59040 | 0 | 385 | 1809 | 21.282477 | 0.4524 | 0 | 771 | 0 | 0.0000000 | 0.1224 | 0 | 92 | 11.9325551 | 0.8005 | 1 | 0 | 696 | 0.0000000 | 0.1238 | 0 | 50 | 696 | 7.183908 | 0.6134 | 0 | 0 | 1809 | 0 | 0.364 | 0 | 1.74230 | 0.28200 | 0 | 2.56345 | 0.5296 | 1 | 0.4524 | 0.4482 | 0 | 2.0241 | 0.2519 | 1 | 6.78225 | 0.3278 | 2 | 1941 | 710 | 693 | 352 | 1941 | 18.13498 | 0.4630 | 0 | 18 | 852 | 2.112676 | 0.15070 | 0 | 81 | 507 | 15.976331 | 0.26320 | 0 | 63 | 186 | 33.87097 | 0.2913 | 0 | 144 | 693 | 20.77922 | 0.2230 | 0 | 187 | 1309 | 14.285714 | 0.6928 | 0 | 187 | 1941 | 9.634209 | 0.6617 | 0 | 295 | 15.19835 | 0.4601 | 0 | 415 | 21.38073 | 0.4681 | 0 | 391 | 1526 | 25.62254 | 0.9011 | 1 | 58 | 555 | 10.45045 | 0.3451 | 0 | 0 | 1843 | 0.0000000 | 0.09479 | 0 | 437 | 1941 | 22.51417 | 0.3902 | 0 | 710 | 0 | 0.0000000 | 0.1079 | 0 | 88 | 12.3943662 | 0.8263 | 1 | 0 | 693 | 0.0000000 | 0.09796 | 0 | 10 | 693 | 1.443001 | 0.1643 | 0 | 0 | 1941 | 0.000000 | 0.1831 | 0 | 2.19120 | 0.4084 | 0 | 2.26919 | 0.3503 | 1 | 0.3902 | 0.3869 | 0 | 1.37956 | 0.07216 | 1 | 6.23015 | 0.2314 | 2 | NA | NA | NA | NA |
| 01001020200 | 01 | 001 | 020200 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 2020 | 816 | 730 | 495 | 1992 | 24.84940 | 0.5954 | 0 | 68 | 834 | 8.153477 | 0.5754 | 0 | 49 | 439 | 11.16173 | 0.02067 | 0 | 105 | 291 | 36.08247 | 0.3019 | 0 | 154 | 730 | 21.09589 | 0.09312 | 0 | 339 | 1265 | 26.798419 | 0.8392 | 1 | 313 | 2012 | 15.556660 | 0.6000 | 0 | 204 | 10.099010 | 0.3419 | 0 | 597 | 29.55446 | 0.8192 | 1 | 359 | 1515 | 23.69637 | 0.8791 | 1 | 132 | 456 | 28.947368 | 0.83510 | 1 | 15 | 1890 | 0.7936508 | 0.40130 | 0 | 1243 | 2020 | 61.534653 | 0.7781 | 1 | 816 | 0 | 0.0000000 | 0.1224 | 0 | 34 | 4.1666667 | 0.6664 | 0 | 13 | 730 | 1.7808219 | 0.5406 | 0 | 115 | 730 | 15.753425 | 0.8382 | 1 | 0 | 2020 | 0 | 0.364 | 0 | 2.70312 | 0.56650 | 1 | 3.27660 | 0.8614 | 3 | 0.7781 | 0.7709 | 1 | 2.5316 | 0.5047 | 1 | 9.28942 | 0.6832 | 6 | 1757 | 720 | 573 | 384 | 1511 | 25.41363 | 0.6427 | 0 | 29 | 717 | 4.044630 | 0.41320 | 0 | 33 | 392 | 8.418367 | 0.03542 | 0 | 116 | 181 | 64.08840 | 0.9086 | 1 | 149 | 573 | 26.00349 | 0.4041 | 0 | 139 | 1313 | 10.586443 | 0.5601 | 0 | 91 | 1533 | 5.936073 | 0.4343 | 0 | 284 | 16.16392 | 0.5169 | 0 | 325 | 18.49744 | 0.2851 | 0 | 164 | 1208 | 13.57616 | 0.4127 | 0 | 42 | 359 | 11.69916 | 0.3998 | 0 | 0 | 1651 | 0.0000000 | 0.09479 | 0 | 1116 | 1757 | 63.51736 | 0.7591 | 1 | 720 | 3 | 0.4166667 | 0.2470 | 0 | 5 | 0.6944444 | 0.5106 | 0 | 9 | 573 | 1.5706806 | 0.46880 | 0 | 57 | 573 | 9.947644 | 0.7317 | 0 | 212 | 1757 | 12.066022 | 0.9549 | 1 | 2.45440 | 0.4888 | 0 | 1.70929 | 0.1025 | 0 | 0.7591 | 0.7527 | 1 | 2.91300 | 0.68620 | 1 | 7.83579 | 0.4802 | 2 | NA | NA | NA | NA |
| 01001020300 | 01 | 001 | 020300 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3543 | 1403 | 1287 | 656 | 3533 | 18.56779 | 0.4443 | 0 | 93 | 1552 | 5.992268 | 0.3724 | 0 | 273 | 957 | 28.52665 | 0.45780 | 0 | 178 | 330 | 53.93939 | 0.7152 | 0 | 451 | 1287 | 35.04274 | 0.49930 | 0 | 346 | 2260 | 15.309734 | 0.5950 | 0 | 252 | 3102 | 8.123791 | 0.2596 | 0 | 487 | 13.745413 | 0.5868 | 0 | 998 | 28.16822 | 0.7606 | 1 | 371 | 2224 | 16.68165 | 0.6266 | 0 | 126 | 913 | 13.800657 | 0.46350 | 0 | 0 | 3365 | 0.0000000 | 0.09298 | 0 | 637 | 3543 | 17.979114 | 0.4049 | 0 | 1403 | 10 | 0.7127584 | 0.3015 | 0 | 2 | 0.1425517 | 0.4407 | 0 | 0 | 1287 | 0.0000000 | 0.1238 | 0 | 101 | 1287 | 7.847708 | 0.6443 | 0 | 0 | 3543 | 0 | 0.364 | 0 | 2.17060 | 0.41010 | 0 | 2.53048 | 0.5116 | 1 | 0.4049 | 0.4011 | 0 | 1.8743 | 0.1942 | 0 | 6.98028 | 0.3576 | 1 | 3694 | 1464 | 1351 | 842 | 3694 | 22.79372 | 0.5833 | 0 | 53 | 1994 | 2.657974 | 0.22050 | 0 | 117 | 967 | 12.099276 | 0.11370 | 0 | 147 | 384 | 38.28125 | 0.3856 | 0 | 264 | 1351 | 19.54108 | 0.1827 | 0 | 317 | 2477 | 12.797739 | 0.6460 | 0 | 127 | 3673 | 3.457664 | 0.2308 | 0 | 464 | 12.56091 | 0.3088 | 0 | 929 | 25.14889 | 0.7080 | 0 | 473 | 2744 | 17.23761 | 0.6211 | 0 | 263 | 975 | 26.97436 | 0.8234 | 1 | 128 | 3586 | 3.5694367 | 0.70770 | 0 | 1331 | 3694 | 36.03140 | 0.5515 | 0 | 1464 | 26 | 1.7759563 | 0.3675 | 0 | 14 | 0.9562842 | 0.5389 | 0 | 35 | 1351 | 2.5906736 | 0.60550 | 0 | 42 | 1351 | 3.108808 | 0.3415 | 0 | 0 | 3694 | 0.000000 | 0.1831 | 0 | 1.86330 | 0.3063 | 0 | 3.16900 | 0.8380 | 1 | 0.5515 | 0.5468 | 0 | 2.03650 | 0.26830 | 0 | 7.62030 | 0.4460 | 1 | 2 | 216593 | NA | NA |
| 01001020400 | 01 | 001 | 020400 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 4840 | 1957 | 1839 | 501 | 4840 | 10.35124 | 0.2177 | 0 | 101 | 2129 | 4.744011 | 0.2447 | 0 | 310 | 1549 | 20.01291 | 0.17080 | 0 | 89 | 290 | 30.68966 | 0.2044 | 0 | 399 | 1839 | 21.69657 | 0.10540 | 0 | 274 | 3280 | 8.353658 | 0.3205 | 0 | 399 | 4293 | 9.294200 | 0.3171 | 0 | 955 | 19.731405 | 0.8643 | 1 | 1195 | 24.69008 | 0.5530 | 0 | 625 | 3328 | 18.78005 | 0.7233 | 0 | 152 | 1374 | 11.062591 | 0.34710 | 0 | 10 | 4537 | 0.2204100 | 0.22560 | 0 | 297 | 4840 | 6.136364 | 0.1647 | 0 | 1957 | 33 | 1.6862545 | 0.3843 | 0 | 25 | 1.2774655 | 0.5516 | 0 | 14 | 1839 | 0.7612833 | 0.3564 | 0 | 19 | 1839 | 1.033170 | 0.1127 | 0 | 0 | 4840 | 0 | 0.364 | 0 | 1.20540 | 0.13470 | 0 | 2.71330 | 0.6129 | 1 | 0.1647 | 0.1632 | 0 | 1.7690 | 0.1591 | 0 | 5.85240 | 0.1954 | 1 | 3539 | 1741 | 1636 | 503 | 3539 | 14.21305 | 0.3472 | 0 | 39 | 1658 | 2.352232 | 0.17990 | 0 | 219 | 1290 | 16.976744 | 0.30880 | 0 | 74 | 346 | 21.38728 | 0.1037 | 0 | 293 | 1636 | 17.90954 | 0.1333 | 0 | 173 | 2775 | 6.234234 | 0.3351 | 0 | 169 | 3529 | 4.788892 | 0.3448 | 0 | 969 | 27.38062 | 0.9225 | 1 | 510 | 14.41085 | 0.1208 | 0 | 670 | 3019 | 22.19278 | 0.8194 | 1 | 148 | 1137 | 13.01671 | 0.4541 | 0 | 89 | 3409 | 2.6107363 | 0.64690 | 0 | 454 | 3539 | 12.82848 | 0.2364 | 0 | 1741 | 143 | 8.2136703 | 0.6028 | 0 | 0 | 0.0000000 | 0.2186 | 0 | 10 | 1636 | 0.6112469 | 0.28340 | 0 | 72 | 1636 | 4.400978 | 0.4538 | 0 | 0 | 3539 | 0.000000 | 0.1831 | 0 | 1.34030 | 0.1575 | 0 | 2.96370 | 0.7496 | 2 | 0.2364 | 0.2344 | 0 | 1.74170 | 0.16270 | 0 | 6.28210 | 0.2389 | 2 | NA | NA | NA | NA |
| 01001020500 | 01 | 001 | 020500 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 9938 | 3969 | 3741 | 1096 | 9938 | 11.02838 | 0.2364 | 0 | 188 | 4937 | 3.807981 | 0.1577 | 0 | 426 | 2406 | 17.70574 | 0.11050 | 0 | 528 | 1335 | 39.55056 | 0.3753 | 0 | 954 | 3741 | 25.50120 | 0.20140 | 0 | 293 | 5983 | 4.897209 | 0.1655 | 0 | 740 | 10110 | 7.319486 | 0.2211 | 0 | 837 | 8.422218 | 0.2408 | 0 | 3012 | 30.30791 | 0.8455 | 1 | 759 | 7155 | 10.60797 | 0.2668 | 0 | 476 | 2529 | 18.821669 | 0.63540 | 0 | 78 | 9297 | 0.8389803 | 0.41110 | 0 | 1970 | 9938 | 19.822902 | 0.4330 | 0 | 3969 | 306 | 7.7097506 | 0.6153 | 0 | 0 | 0.0000000 | 0.2198 | 0 | 7 | 3741 | 0.1871157 | 0.2535 | 0 | 223 | 3741 | 5.960973 | 0.5483 | 0 | 0 | 9938 | 0 | 0.364 | 0 | 0.98210 | 0.08468 | 0 | 2.39960 | 0.4381 | 1 | 0.4330 | 0.4290 | 0 | 2.0009 | 0.2430 | 0 | 5.81560 | 0.1905 | 1 | 10674 | 4504 | 4424 | 1626 | 10509 | 15.47245 | 0.3851 | 0 | 81 | 5048 | 1.604596 | 0.09431 | 0 | 321 | 2299 | 13.962592 | 0.17970 | 0 | 711 | 2125 | 33.45882 | 0.2836 | 0 | 1032 | 4424 | 23.32731 | 0.3109 | 0 | 531 | 6816 | 7.790493 | 0.4251 | 0 | 301 | 10046 | 2.996217 | 0.1894 | 0 | 1613 | 15.11149 | 0.4553 | 0 | 2765 | 25.90407 | 0.7494 | 0 | 1124 | 7281 | 15.43744 | 0.5253 | 0 | 342 | 2912 | 11.74451 | 0.4019 | 0 | 52 | 9920 | 0.5241935 | 0.35230 | 0 | 2603 | 10674 | 24.38636 | 0.4160 | 0 | 4504 | 703 | 15.6083481 | 0.7378 | 0 | 29 | 0.6438721 | 0.5037 | 0 | 37 | 4424 | 0.8363472 | 0.33420 | 0 | 207 | 4424 | 4.679023 | 0.4754 | 0 | 176 | 10674 | 1.648866 | 0.7598 | 1 | 1.40481 | 0.1743 | 0 | 2.48420 | 0.4802 | 0 | 0.4160 | 0.4125 | 0 | 2.81090 | 0.63730 | 1 | 7.11591 | 0.3654 | 1 | 5 | 2250459 | NA | NA |
| 01001020600 | 01 | 001 | 020600 | AL | Alabama | Autauga County | 3 | South Region | 6 | East South Central Division | 3402 | 1456 | 1308 | 735 | 3402 | 21.60494 | 0.5199 | 0 | 134 | 1720 | 7.790698 | 0.5436 | 0 | 242 | 1032 | 23.44961 | 0.28010 | 0 | 62 | 276 | 22.46377 | 0.1035 | 0 | 304 | 1308 | 23.24159 | 0.14070 | 0 | 301 | 2151 | 13.993491 | 0.5510 | 0 | 355 | 3445 | 10.304790 | 0.3656 | 0 | 386 | 11.346267 | 0.4232 | 0 | 931 | 27.36626 | 0.7200 | 0 | 440 | 2439 | 18.04018 | 0.6912 | 0 | 143 | 924 | 15.476190 | 0.52900 | 0 | 4 | 3254 | 0.1229256 | 0.19840 | 0 | 723 | 3402 | 21.252205 | 0.4519 | 0 | 1456 | 18 | 1.2362637 | 0.3507 | 0 | 433 | 29.7390110 | 0.9468 | 1 | 16 | 1308 | 1.2232416 | 0.4493 | 0 | 28 | 1308 | 2.140673 | 0.2298 | 0 | 0 | 3402 | 0 | 0.364 | 0 | 2.12080 | 0.39510 | 0 | 2.56180 | 0.5288 | 0 | 0.4519 | 0.4477 | 0 | 2.3406 | 0.4048 | 1 | 7.47510 | 0.4314 | 1 | 3536 | 1464 | 1330 | 1279 | 3523 | 36.30429 | 0.8215 | 1 | 34 | 1223 | 2.780049 | 0.23780 | 0 | 321 | 1111 | 28.892889 | 0.75870 | 1 | 67 | 219 | 30.59361 | 0.2305 | 0 | 388 | 1330 | 29.17293 | 0.5075 | 0 | 306 | 2380 | 12.857143 | 0.6480 | 0 | 415 | 3496 | 11.870709 | 0.7535 | 1 | 547 | 15.46946 | 0.4760 | 0 | 982 | 27.77149 | 0.8327 | 1 | 729 | 2514 | 28.99761 | 0.9488 | 1 | 95 | 880 | 10.79545 | 0.3601 | 0 | 0 | 3394 | 0.0000000 | 0.09479 | 0 | 985 | 3536 | 27.85633 | 0.4608 | 0 | 1464 | 0 | 0.0000000 | 0.1079 | 0 | 364 | 24.8633880 | 0.9300 | 1 | 0 | 1330 | 0.0000000 | 0.09796 | 0 | 17 | 1330 | 1.278196 | 0.1463 | 0 | 0 | 3536 | 0.000000 | 0.1831 | 0 | 2.96830 | 0.6434 | 2 | 2.71239 | 0.6156 | 2 | 0.4608 | 0.4569 | 0 | 1.46526 | 0.08976 | 1 | 7.60675 | 0.4440 | 5 | NA | NA | NA | NA |
svi_divisional_lihtc20 <- svi_divisional_lihtc20 %>%
filter(is.na(pre10_lihtc_project_cnt)) %>%
filter(post10_lihtc_project_cnt >= 1) %>%
select(GEOID_2010_trt, pre10_lihtc_project_cnt, pre10_lihtc_project_dollars, post10_lihtc_project_cnt, post10_lihtc_project_dollars)
# View data
svi_divisional_lihtc20 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID_2010_trt | pre10_lihtc_project_cnt | pre10_lihtc_project_dollars | post10_lihtc_project_cnt | post10_lihtc_project_dollars |
|---|---|---|---|---|
| 02020000202 | NA | NA | 2 | 1651298 |
| 02020001300 | NA | NA | 1 | 0 |
| 02122000900 | NA | NA | 1 | 0 |
| 02122001000 | NA | NA | 1 | 0 |
| 02180000200 | NA | NA | 1 | 0 |
| 02261000200 | NA | NA | 1 | 0 |
svi_national_lihtc20 <- svi_national_lihtc20 %>%
filter(is.na(pre10_lihtc_project_cnt)) %>%
filter(post10_lihtc_project_cnt >= 1) %>%
select(GEOID_2010_trt, pre10_lihtc_project_cnt, pre10_lihtc_project_dollars, post10_lihtc_project_cnt, post10_lihtc_project_dollars)
# View data
svi_national_lihtc20 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID_2010_trt | pre10_lihtc_project_cnt | pre10_lihtc_project_dollars | post10_lihtc_project_cnt | post10_lihtc_project_dollars |
|---|---|---|---|---|
| 01003010500 | NA | NA | 1 | 481325 |
| 01003011601 | NA | NA | 1 | 887856 |
| 01017954600 | NA | NA | 2 | 950192 |
| 01021060101 | NA | NA | 1 | 812048 |
| 01039962600 | NA | NA | 1 | 434742 |
| 01043964900 | NA | NA | 1 | 1046201 |
# Filter SVI divisional data to remove all tracts that had a project in 2010 or before:
svi_divisional_lihtc <- svi_divisional %>%
filter(! GEOID_2010_trt %in% lihtc_projects10$fips2010)
# Merge SVI divisional data with post 2010 project data, create flag for projects (1 for tracts that have LIHTC project, 0 for those that do not):
svi_divisional_lihtc <- left_join(svi_divisional_lihtc,
svi_divisional_lihtc20,
join_by("GEOID_2010_trt" == "GEOID_2010_trt")) %>%
mutate(pre10_lihtc_project_cnt = replace_na(pre10_lihtc_project_cnt, 0),
post10_lihtc_project_cnt = replace_na(post10_lihtc_project_cnt, 0),
pre10_lihtc_project_dollars = replace_na(pre10_lihtc_project_dollars, 0),
post10_lihtc_project_dollars = replace_na(post10_lihtc_project_dollars, 0),
lihtc_flag = if_else(post10_lihtc_project_cnt >= 1, 1, 0))
# Finally, we want to filter our dataset to only have tracts that are eligible for the LIHTC program and that have SVI data:
svi_divisional_lihtc <- left_join(svi_divisional_lihtc, lihtc_eligible_flag,
join_by("GEOID_2010_trt" == "GEOID10")) %>%
filter(tolower(lihtc_eligibility) == "yes") %>%
filter(!is.na(F_TOTAL_10)) %>%
filter(!is.na(F_TOTAL_20))
# View data
svi_divisional_lihtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | pre10_lihtc_project_cnt | pre10_lihtc_project_dollars | post10_lihtc_project_cnt | post10_lihtc_project_dollars | lihtc_flag | lihtc_eligibility |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 02050000100 | 02 | 050 | 000100 | AK | Alaska | Bethel Census Area | 4 | West Region | 9 | Pacific Division | 9481 | 2776 | 2127 | 4499 | 9422 | 47.74995 | 0.9162 | 1 | 923 | 3537 | 26.09556 | 0.9936 | 1 | 224 | 1570 | 14.26752 | 0.010260 | 0 | 35 | 557 | 6.283663 | 0.012980 | 0 | 259 | 2127 | 12.17677 | 0.003169 | 0 | 1431 | 4685 | 30.54429 | 0.8055 | 1 | 2901 | 9557 | 30.35471 | 0.8979 | 1 | 688 | 7.256619 | 0.24940 | 0 | 3678 | 38.79338 | 0.9771 | 1 | 1085 | 5745 | 18.88599 | 0.8446 | 1 | 418 | 1677 | 24.92546 | 0.7894 | 1 | 771 | 8382 | 9.1982820 | 0.64930 | 0 | 9146 | 9481 | 96.46662 | 0.9412 | 1 | 2776 | 3 | 0.1080692 | 0.18850 | 0 | 14 | 0.5043228 | 0.5274 | 0 | 992 | 2127 | 46.638458 | 0.9944 | 1 | 1814 | 2127 | 85.28444 | 0.9993 | 1 | 0 | 9481 | 0.000000 | 0.3743 | 0 | 3.616369 | 0.7794 | 4 | 3.50980 | 0.9107 | 3 | 0.9412 | 0.9315 | 1 | 3.08390 | 0.7535 | 2 | 11.15127 | 0.8587 | 10 | 10311 | 2692 | 2104 | 5779 | 10267 | 56.28713 | 0.9839 | 1 | 870 | 3667 | 23.72512 | 0.9967 | 1 | 232 | 1494 | 15.52878 | 0.05333 | 0 | 95 | 610 | 15.57377 | 0.02547 | 0 | 327 | 2104 | 15.54183 | 0.009597 | 0 | 1228 | 5181 | 23.701988 | 0.78920 | 1 | 1639 | 10294 | 15.92190 | 0.9319 | 1 | 812 | 7.875085 | 0.12960 | 0 | 4008 | 38.87111 | 0.9926 | 1 | 1259 | 6286.0000 | 20.02864 | 0.8560 | 1 | 483 | 1769.0000 | 27.30356 | 0.8759 | 1 | 188 | 9020 | 2.0842572 | 0.31690 | 0 | 10181 | 10311.000 | 98.73921 | 0.9760 | 1 | 2692 | 1 | 0.0371471 | 0.16590 | 0 | 31 | 1.1515602 | 0.6200 | 0 | 1024 | 2104 | 48.669201 | 0.9978 | 1 | 1793 | 2104.0000 | 85.21863 | 0.9993 | 1 | 477 | 10311 | 4.626127 | 0.9233 | 1 | 3.711297 | 0.8199 | 4 | 3.17100 | 0.8206 | 3 | 0.9760 | 0.9674 | 1 | 3.70630 | 0.9326 | 3 | 11.56460 | 0.9233 | 11 | 0 | 0 | 0 | 0 | 0 | Yes |
| 02050000300 | 02 | 050 | 000300 | AK | Alaska | Bethel Census Area | 4 | West Region | 9 | Pacific Division | 1386 | 725 | 439 | 460 | 1383 | 33.26103 | 0.7628 | 1 | 118 | 596 | 19.79866 | 0.9694 | 1 | 38 | 308 | 12.33766 | 0.008283 | 0 | 10 | 131 | 7.633588 | 0.014190 | 0 | 48 | 439 | 10.93394 | 0.002703 | 0 | 168 | 777 | 21.62162 | 0.7013 | 0 | 477 | 1475 | 32.33898 | 0.9213 | 1 | 160 | 11.544011 | 0.55680 | 0 | 464 | 33.47763 | 0.8938 | 1 | 122 | 955 | 12.77487 | 0.5244 | 0 | 99 | 318 | 31.13208 | 0.8947 | 1 | 4 | 1284 | 0.3115265 | 0.08126 | 0 | 1161 | 1386 | 83.76623 | 0.8084 | 1 | 725 | 0 | 0.0000000 | 0.09395 | 0 | 8 | 1.1034483 | 0.6032 | 0 | 90 | 439 | 20.501139 | 0.8956 | 1 | 261 | 439 | 59.45330 | 0.9957 | 1 | 0 | 1386 | 0.000000 | 0.3743 | 0 | 3.357503 | 0.7224 | 3 | 2.95096 | 0.7007 | 2 | 0.8084 | 0.8000 | 1 | 2.96275 | 0.7006 | 2 | 10.07961 | 0.7498 | 8 | 1404 | 742 | 369 | 597 | 1379 | 43.29224 | 0.9267 | 1 | 152 | 646 | 23.52941 | 0.9965 | 1 | 50 | 267 | 18.72659 | 0.11360 | 0 | 27 | 102 | 26.47059 | 0.08218 | 0 | 77 | 369 | 20.86721 | 0.046030 | 0 | 149 | 794 | 18.765743 | 0.71930 | 0 | 345 | 1404 | 24.57265 | 0.9915 | 1 | 115 | 8.190883 | 0.14420 | 0 | 484 | 34.47293 | 0.9690 | 1 | 139 | 920.0005 | 15.10869 | 0.6447 | 0 | 89 | 276.0002 | 32.24635 | 0.9371 | 1 | 6 | 1243 | 0.4827031 | 0.11630 | 0 | 1240 | 1404.000 | 88.31906 | 0.8327 | 1 | 742 | 0 | 0.0000000 | 0.08271 | 0 | 9 | 1.2129380 | 0.6256 | 0 | 112 | 369 | 30.352304 | 0.9725 | 1 | 223 | 369.0005 | 60.43353 | 0.9961 | 1 | 94 | 1404 | 6.695157 | 0.9478 | 1 | 3.680030 | 0.8126 | 3 | 2.81130 | 0.6519 | 2 | 0.8327 | 0.8253 | 1 | 3.62471 | 0.9189 | 3 | 10.94874 | 0.8637 | 9 | 0 | 0 | 0 | 0 | 0 | Yes |
| 02070000100 | 02 | 070 | 000100 | AK | Alaska | Dillingham Census Area | 4 | West Region | 9 | Pacific Division | 2569 | 1354 | 584 | 1037 | 2565 | 40.42885 | 0.8513 | 1 | 236 | 853 | 27.66706 | 0.9954 | 1 | 68 | 398 | 17.08543 | 0.016280 | 0 | 34 | 186 | 18.279570 | 0.034550 | 0 | 102 | 584 | 17.46575 | 0.006339 | 0 | 384 | 1303 | 29.47045 | 0.7955 | 1 | 1140 | 2710 | 42.06642 | 0.9814 | 1 | 217 | 8.446867 | 0.33900 | 0 | 940 | 36.59011 | 0.9531 | 1 | 311 | 1728 | 17.99769 | 0.8126 | 1 | 94 | 442 | 21.26697 | 0.7005 | 0 | 203 | 2363 | 8.5907744 | 0.63010 | 0 | 2410 | 2569 | 93.81082 | 0.9081 | 1 | 1354 | 0 | 0.0000000 | 0.09395 | 0 | 14 | 1.0339734 | 0.5974 | 0 | 186 | 584 | 31.849315 | 0.9650 | 1 | 367 | 584 | 62.84247 | 0.9966 | 1 | 0 | 2569 | 0.000000 | 0.3743 | 0 | 3.629939 | 0.7830 | 4 | 3.43530 | 0.8919 | 2 | 0.9081 | 0.8988 | 1 | 3.02725 | 0.7274 | 2 | 11.00059 | 0.8430 | 9 | 2801 | 1444 | 718 | 1191 | 2792 | 42.65759 | 0.9224 | 1 | 183 | 1059 | 17.28045 | 0.9849 | 1 | 94 | 487 | 19.30185 | 0.12840 | 0 | 51 | 231 | 22.07792 | 0.05382 | 0 | 145 | 718 | 20.19499 | 0.039410 | 0 | 265 | 1619 | 16.368129 | 0.67640 | 0 | 552 | 2801 | 19.70725 | 0.9721 | 1 | 353 | 12.602642 | 0.39670 | 0 | 862 | 30.77472 | 0.9114 | 1 | 295 | 1939.1327 | 15.21299 | 0.6517 | 0 | 200 | 579.0000 | 34.54231 | 0.9555 | 1 | 49 | 2513 | 1.9498607 | 0.30380 | 0 | 2536 | 2801.124 | 90.53509 | 0.8619 | 1 | 1444 | 1 | 0.0692521 | 0.16740 | 0 | 10 | 0.6925208 | 0.5747 | 0 | 255 | 718 | 35.515320 | 0.9868 | 1 | 481 | 718.0000 | 66.99164 | 0.9972 | 1 | 230 | 2801 | 8.211353 | 0.9566 | 1 | 3.595210 | 0.7924 | 3 | 3.21910 | 0.8382 | 2 | 0.8619 | 0.8543 | 1 | 3.68270 | 0.9288 | 3 | 11.35891 | 0.9048 | 9 | 0 | 0 | 0 | 0 | 0 | Yes |
| 02122000100 | 02 | 122 | 000100 | AK | Alaska | Kenai Peninsula Borough | 4 | West Region | 9 | Pacific Division | 251 | 428 | 138 | 90 | 251 | 35.85657 | 0.7982 | 1 | 29 | 145 | 20.00000 | 0.9707 | 1 | 54 | 90 | 60.00000 | 0.930300 | 1 | 0 | 48 | 0.000000 | 0.005509 | 0 | 54 | 138 | 39.13043 | 0.301700 | 0 | 21 | 186 | 11.29032 | 0.4631 | 0 | 198 | 460 | 43.04348 | 0.9847 | 1 | 6 | 2.390438 | 0.02129 | 0 | 61 | 24.30279 | 0.4943 | 0 | 56 | 395 | 14.17722 | 0.6201 | 0 | 18 | 57 | 31.57895 | 0.8999 | 1 | 0 | 233 | 0.0000000 | 0.02799 | 0 | 205 | 251 | 81.67331 | 0.7907 | 1 | 428 | 0 | 0.0000000 | 0.09395 | 0 | 20 | 4.6728972 | 0.7396 | 0 | 7 | 138 | 5.072464 | 0.5709 | 0 | 17 | 138 | 12.31884 | 0.8207 | 1 | 0 | 251 | 0.000000 | 0.3743 | 0 | 3.518400 | 0.7575 | 3 | 2.06358 | 0.2722 | 1 | 0.7907 | 0.7826 | 1 | 2.59945 | 0.5334 | 1 | 8.97213 | 0.6292 | 6 | 531 | 307 | 131 | 193 | 523 | 36.90249 | 0.8743 | 1 | 74 | 324 | 22.83951 | 0.9958 | 1 | 23 | 92 | 25.00000 | 0.32780 | 0 | 4 | 39 | 10.25641 | 0.01129 | 0 | 27 | 131 | 20.61069 | 0.043330 | 0 | 6 | 389 | 1.542417 | 0.05899 | 0 | 220 | 523 | 42.06501 | 0.9998 | 1 | 12 | 2.259887 | 0.01198 | 0 | 111 | 20.90395 | 0.4394 | 0 | 50 | 412.0000 | 12.13592 | 0.4328 | 0 | 23 | 72.0000 | 31.94445 | 0.9342 | 1 | 0 | 512 | 0.0000000 | 0.02391 | 0 | 437 | 531.000 | 82.29756 | 0.7611 | 1 | 307 | 0 | 0.0000000 | 0.08271 | 0 | 16 | 5.2117264 | 0.7700 | 1 | 11 | 131 | 8.396947 | 0.6735 | 0 | 42 | 131.0000 | 32.06107 | 0.9796 | 1 | 111 | 531 | 20.903955 | 0.9772 | 1 | 2.972220 | 0.6420 | 3 | 1.84229 | 0.1603 | 1 | 0.7611 | 0.7544 | 1 | 3.48301 | 0.8841 | 3 | 9.05862 | 0.6447 | 8 | 0 | 0 | 0 | 0 | 0 | Yes |
| 02180000100 | 02 | 180 | 000100 | AK | Alaska | Nome Census Area | 4 | West Region | 9 | Pacific Division | 5766 | 2016 | 1373 | 3052 | 5552 | 54.97118 | 0.9552 | 1 | 519 | 2134 | 24.32052 | 0.9899 | 1 | 224 | 852 | 26.29108 | 0.095960 | 0 | 94 | 521 | 18.042227 | 0.033620 | 0 | 318 | 1373 | 23.16096 | 0.021070 | 0 | 580 | 2709 | 21.41011 | 0.6970 | 0 | 1988 | 5811 | 34.21098 | 0.9380 | 1 | 299 | 5.185571 | 0.11630 | 0 | 2214 | 38.39750 | 0.9740 | 1 | 580 | 3550 | 16.33803 | 0.7460 | 0 | 439 | 1083 | 40.53555 | 0.9715 | 1 | 95 | 5090 | 1.8664047 | 0.26950 | 0 | 5430 | 5766 | 94.17274 | 0.9125 | 1 | 2016 | 15 | 0.7440476 | 0.22730 | 0 | 27 | 1.3392857 | 0.6231 | 0 | 495 | 1373 | 36.052440 | 0.9787 | 1 | 1167 | 1373 | 84.99636 | 0.9991 | 1 | 187 | 5766 | 3.243149 | 0.8747 | 1 | 3.601170 | 0.7768 | 3 | 3.07730 | 0.7608 | 2 | 0.9125 | 0.9031 | 1 | 3.70290 | 0.9385 | 3 | 11.29387 | 0.8751 | 9 | 5901 | 2111 | 1441 | 2939 | 5789 | 50.76870 | 0.9667 | 1 | 554 | 2224 | 24.91007 | 0.9980 | 1 | 237 | 1047 | 22.63610 | 0.23610 | 0 | 56 | 394 | 14.21320 | 0.02099 | 0 | 293 | 1441 | 20.33310 | 0.040350 | 0 | 586 | 2969 | 19.737285 | 0.73470 | 0 | 1202 | 5852 | 20.53999 | 0.9780 | 1 | 469 | 7.947806 | 0.13320 | 0 | 2245 | 38.04440 | 0.9906 | 1 | 590 | 3606.9999 | 16.35708 | 0.7143 | 0 | 532 | 1175.0000 | 45.27660 | 0.9916 | 1 | 161 | 5296 | 3.0400302 | 0.39890 | 0 | 5578 | 5901.000 | 94.52635 | 0.9154 | 1 | 2111 | 6 | 0.2842255 | 0.17600 | 0 | 23 | 1.0895310 | 0.6155 | 0 | 602 | 1441 | 41.776544 | 0.9943 | 1 | 1240 | 1441.0000 | 86.05135 | 0.9993 | 1 | 351 | 5901 | 5.948144 | 0.9413 | 1 | 3.717750 | 0.8217 | 3 | 3.22860 | 0.8410 | 2 | 0.9154 | 0.9073 | 1 | 3.72640 | 0.9367 | 3 | 11.58815 | 0.9255 | 9 | 0 | 0 | 0 | 0 | 0 | Yes |
| 02290000100 | 02 | 290 | 000100 | AK | Alaska | Yukon-Koyukuk Census Area | 4 | West Region | 9 | Pacific Division | 1127 | 969 | 515 | 482 | 1127 | 42.76841 | 0.8749 | 1 | 165 | 551 | 29.94555 | 0.9970 | 1 | 104 | 386 | 26.94301 | 0.106600 | 0 | 16 | 129 | 12.403101 | 0.019980 | 0 | 120 | 515 | 23.30097 | 0.022180 | 0 | 216 | 727 | 29.71114 | 0.7981 | 1 | 492 | 1121 | 43.88938 | 0.9865 | 1 | 65 | 5.767524 | 0.14900 | 0 | 329 | 29.19255 | 0.7462 | 0 | 193 | 825 | 23.39394 | 0.9394 | 1 | 85 | 247 | 34.41296 | 0.9316 | 1 | 13 | 1049 | 1.2392755 | 0.20170 | 0 | 960 | 1127 | 85.18190 | 0.8206 | 1 | 969 | 0 | 0.0000000 | 0.09395 | 0 | 30 | 3.0959752 | 0.7027 | 0 | 83 | 515 | 16.116505 | 0.8480 | 1 | 333 | 515 | 64.66019 | 0.9969 | 1 | 0 | 1127 | 0.000000 | 0.3743 | 0 | 3.678680 | 0.7918 | 4 | 2.96790 | 0.7088 | 2 | 0.8206 | 0.8122 | 1 | 3.01585 | 0.7215 | 2 | 10.48303 | 0.7894 | 9 | 1118 | 1030 | 445 | 516 | 1097 | 47.03737 | 0.9495 | 1 | 94 | 463 | 20.30238 | 0.9929 | 1 | 68 | 346 | 19.65318 | 0.13910 | 0 | 22 | 99 | 22.22222 | 0.05448 | 0 | 90 | 445 | 20.22472 | 0.039600 | 0 | 125 | 703 | 17.780939 | 0.70070 | 0 | 161 | 1099 | 14.64968 | 0.9100 | 1 | 159 | 14.221825 | 0.49590 | 0 | 338 | 30.23256 | 0.8989 | 1 | 158 | 761.0000 | 20.76216 | 0.8764 | 1 | 88 | 218.0000 | 40.36697 | 0.9809 | 1 | 0 | 1038 | 0.0000000 | 0.02391 | 0 | 1001 | 1118.000 | 89.53488 | 0.8480 | 1 | 1030 | 0 | 0.0000000 | 0.08271 | 0 | 17 | 1.6504854 | 0.6556 | 0 | 76 | 445 | 17.078652 | 0.8684 | 1 | 274 | 445.0000 | 61.57303 | 0.9965 | 1 | 58 | 1118 | 5.187835 | 0.9330 | 1 | 3.592700 | 0.7918 | 3 | 3.27601 | 0.8582 | 3 | 0.8480 | 0.8405 | 1 | 3.53621 | 0.8979 | 3 | 11.25292 | 0.8955 | 10 | 0 | 0 | 0 | 0 | 0 | Yes |
# Filter SVI national data to remove all tracts that had a project in 2010 or before:
svi_national_lihtc <- svi_national %>%
filter(! GEOID_2010_trt %in% lihtc_projects10$fips2010)
# Merge SVI national data with post 2010 project data, create flag for projects (1 for tracts that have LIHTC project, 0 for those that do not):
svi_national_lihtc <- left_join(svi_national_lihtc,
svi_national_lihtc20,
join_by("GEOID_2010_trt" == "GEOID_2010_trt")) %>%
mutate(pre10_lihtc_project_cnt = replace_na(pre10_lihtc_project_cnt, 0),
post10_lihtc_project_cnt = replace_na(post10_lihtc_project_cnt, 0),
pre10_lihtc_project_dollars = replace_na(pre10_lihtc_project_dollars, 0),
post10_lihtc_project_dollars = replace_na(post10_lihtc_project_dollars, 0),
lihtc_flag = if_else(post10_lihtc_project_cnt >= 1, 1, 0))
# Finally, we want to filter our dataset to only have tracts that are eligible for the LIHTC program and that have SVI data:
svi_national_lihtc <- left_join(svi_national_lihtc, lihtc_eligible_flag,
join_by("GEOID_2010_trt" == "GEOID10")) %>%
filter(tolower(lihtc_eligibility) == "yes") %>%
filter(!is.na(F_TOTAL_10)) %>%
filter(!is.na(F_TOTAL_20))
# View data
svi_national_lihtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| GEOID_2010_trt | FIPS_st | FIPS_county | FIPS_tract | state | state_name | county | region_number | region | division_number | division | E_TOTPOP_10 | E_HU_10 | E_HH_10 | E_POV150_10 | ET_POVSTATUS_10 | EP_POV150_10 | EPL_POV150_10 | F_POV150_10 | E_UNEMP_10 | ET_EMPSTATUS_10 | EP_UNEMP_10 | EPL_UNEMP_10 | F_UNEMP_10 | E_HBURD_OWN_10 | ET_HOUSINGCOST_OWN_10 | EP_HBURD_OWN_10 | EPL_HBURD_OWN_10 | F_HBURD_OWN_10 | E_HBURD_RENT_10 | ET_HOUSINGCOST_RENT_10 | EP_HBURD_RENT_10 | EPL_HBURD_RENT_10 | F_HBURD_RENT_10 | E_HBURD_10 | ET_HOUSINGCOST_10 | EP_HBURD_10 | EPL_HBURD_10 | F_HBURD_10 | E_NOHSDP_10 | ET_EDSTATUS_10 | EP_NOHSDP_10 | EPL_NOHSDP_10 | F_NOHSDP_10 | E_UNINSUR_12 | ET_INSURSTATUS_12 | EP_UNINSUR_12 | EPL_UNINSUR_12 | F_UNINSUR_12 | E_AGE65_10 | EP_AGE65_10 | EPL_AGE65_10 | F_AGE65_10 | E_AGE17_10 | EP_AGE17_10 | EPL_AGE17_10 | F_AGE17_10 | E_DISABL_12 | ET_DISABLSTATUS_12 | EP_DISABL_12 | EPL_DISABL_12 | F_DISABL_12 | E_SNGPNT_10 | ET_FAMILIES_10 | EP_SNGPNT_10 | EPL_SNGPNT_10 | F_SNGPNT_10 | E_LIMENG_10 | ET_POPAGE5UP_10 | EP_LIMENG_10 | EPL_LIMENG_10 | F_LIMENG_10 | E_MINRTY_10 | ET_POPETHRACE_10 | EP_MINRTY_10 | EPL_MINRTY_10 | F_MINRTY_10 | E_STRHU_10 | E_MUNIT_10 | EP_MUNIT_10 | EPL_MUNIT_10 | F_MUNIT_10 | E_MOBILE_10 | EP_MOBILE_10 | EPL_MOBILE_10 | F_MOBILE_10 | E_CROWD_10 | ET_OCCUPANTS_10 | EP_CROWD_10 | EPL_CROWD_10 | F_CROWD_10 | E_NOVEH_10 | ET_KNOWNVEH_10 | EP_NOVEH_10 | EPL_NOVEH_10 | F_NOVEH_10 | E_GROUPQ_10 | ET_HHTYPE_10 | EP_GROUPQ_10 | EPL_GROUPQ_10 | F_GROUPQ_10 | SPL_THEME1_10 | RPL_THEME1_10 | F_THEME1_10 | SPL_THEME2_10 | RPL_THEME2_10 | F_THEME2_10 | SPL_THEME3_10 | RPL_THEME3_10 | F_THEME3_10 | SPL_THEME4_10 | RPL_THEME4_10 | F_THEME4_10 | SPL_THEMES_10 | RPL_THEMES_10 | F_TOTAL_10 | E_TOTPOP_20 | E_HU_20 | E_HH_20 | E_POV150_20 | ET_POVSTATUS_20 | EP_POV150_20 | EPL_POV150_20 | F_POV150_20 | E_UNEMP_20 | ET_EMPSTATUS_20 | EP_UNEMP_20 | EPL_UNEMP_20 | F_UNEMP_20 | E_HBURD_OWN_20 | ET_HOUSINGCOST_OWN_20 | EP_HBURD_OWN_20 | EPL_HBURD_OWN_20 | F_HBURD_OWN_20 | E_HBURD_RENT_20 | ET_HOUSINGCOST_RENT_20 | EP_HBURD_RENT_20 | EPL_HBURD_RENT_20 | F_HBURD_RENT_20 | E_HBURD_20 | ET_HOUSINGCOST_20 | EP_HBURD_20 | EPL_HBURD_20 | F_HBURD_20 | E_NOHSDP_20 | ET_EDSTATUS_20 | EP_NOHSDP_20 | EPL_NOHSDP_20 | F_NOHSDP_20 | E_UNINSUR_20 | ET_INSURSTATUS_20 | EP_UNINSUR_20 | EPL_UNINSUR_20 | F_UNINSUR_20 | E_AGE65_20 | EP_AGE65_20 | EPL_AGE65_20 | F_AGE65_20 | E_AGE17_20 | EP_AGE17_20 | EPL_AGE17_20 | F_AGE17_20 | E_DISABL_20 | ET_DISABLSTATUS_20 | EP_DISABL_20 | EPL_DISABL_20 | F_DISABL_20 | E_SNGPNT_20 | ET_FAMILIES_20 | EP_SNGPNT_20 | EPL_SNGPNT_20 | F_SNGPNT_20 | E_LIMENG_20 | ET_POPAGE5UP_20 | EP_LIMENG_20 | EPL_LIMENG_20 | F_LIMENG_20 | E_MINRTY_20 | ET_POPETHRACE_20 | EP_MINRTY_20 | EPL_MINRTY_20 | F_MINRTY_20 | E_STRHU_20 | E_MUNIT_20 | EP_MUNIT_20 | EPL_MUNIT_20 | F_MUNIT_20 | E_MOBILE_20 | EP_MOBILE_20 | EPL_MOBILE_20 | F_MOBILE_20 | E_CROWD_20 | ET_OCCUPANTS_20 | EP_CROWD_20 | EPL_CROWD_20 | F_CROWD_20 | E_NOVEH_20 | ET_KNOWNVEH_20 | EP_NOVEH_20 | EPL_NOVEH_20 | F_NOVEH_20 | E_GROUPQ_20 | ET_HHTYPE_20 | EP_GROUPQ_20 | EPL_GROUPQ_20 | F_GROUPQ_20 | SPL_THEME1_20 | RPL_THEME1_20 | F_THEME1_20 | SPL_THEME2_20 | RPL_THEME2_20 | F_THEME2_20 | SPL_THEME3_20 | RPL_THEME3_20 | F_THEME3_20 | SPL_THEME4_20 | RPL_THEME4_20 | F_THEME4_20 | SPL_THEMES_20 | RPL_THEMES_20 | F_TOTAL_20 | pre10_lihtc_project_cnt | pre10_lihtc_project_dollars | post10_lihtc_project_cnt | post10_lihtc_project_dollars | lihtc_flag | lihtc_eligibility |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 01005950700 | 01 | 005 | 950700 | AL | Alabama | Barbour County | 3 | South Region | 6 | East South Central Division | 1753 | 687 | 563 | 615 | 1628 | 37.77641 | 0.8088 | 1 | 17 | 667 | 2.548726 | 0.06941 | 0 | 41 | 376 | 10.90426 | 0.01945 | 0 | 62 | 187 | 33.15508 | 0.2464 | 0 | 103 | 563 | 18.29485 | 0.04875 | 0 | 264 | 1208 | 21.85430 | 0.7570 | 1 | 201 | 1527 | 13.163065 | 0.4991 | 0 | 368 | 20.992584 | 0.89510 | 1 | 462 | 26.354820 | 0.66130 | 0 | 211 | 1085 | 19.44700 | 0.7505 | 1 | 107 | 399 | 26.81704 | 0.8048 | 1 | 0 | 1628 | 0.000000 | 0.09298 | 0 | 861 | 1753 | 49.11580 | 0.7101 | 0 | 687 | 17 | 2.474527 | 0.4324 | 0 | 38 | 5.5312955 | 0.6970 | 0 | 3 | 563 | 0.5328597 | 0.3037 | 0 | 19 | 563 | 3.374778 | 0.3529 | 0 | 233 | 1753 | 13.29150 | 0.9517 | 1 | 2.18306 | 0.4137 | 2 | 3.20468 | 0.8377 | 3 | 0.7101 | 0.7035 | 0 | 2.7377 | 0.6100 | 1 | 8.83554 | 0.6264 | 6 | 1527 | 691 | 595 | 565 | 1365 | 41.39194 | 0.8765 | 1 | 37 | 572 | 6.468532 | 0.6776 | 0 | 70 | 376 | 18.617021 | 0.38590 | 0 | 92 | 219 | 42.00913 | 0.4736 | 0 | 162 | 595 | 27.22689 | 0.4454 | 0 | 280 | 1114 | 25.13465 | 0.8942 | 1 | 105 | 1378 | 7.619739 | 0.5505 | 0 | 383 | 25.081860 | 0.88450 | 1 | 337 | 22.069417 | 0.51380 | 0 | 237 | 1041.0000 | 22.76657 | 0.8360 | 1 | 144 | 413.0000 | 34.86683 | 0.9114 | 1 | 11 | 1466 | 0.7503411 | 0.40700 | 0 | 711 | 1527.0000 | 46.56189 | 0.6441 | 0 | 691 | 13 | 1.881331 | 0.3740 | 0 | 37 | 5.3545586 | 0.7152 | 0 | 0 | 595 | 0.0000000 | 0.09796 | 0 | 115 | 595.0000 | 19.327731 | 0.8859 | 1 | 149 | 1527 | 9.757695 | 0.9470 | 1 | 3.4442 | 0.7707 | 2 | 3.55270 | 0.9403 | 3 | 0.6441 | 0.6387 | 0 | 3.02006 | 0.7337 | 2 | 10.66106 | 0.8537 | 7 | 0 | 0 | 0 | 0 | 0 | Yes |
| 01011952100 | 01 | 011 | 952100 | AL | Alabama | Bullock County | 3 | South Region | 6 | East South Central Division | 1652 | 796 | 554 | 564 | 1652 | 34.14044 | 0.7613 | 1 | 46 | 816 | 5.637255 | 0.33630 | 0 | 96 | 458 | 20.96070 | 0.19930 | 0 | 62 | 96 | 64.58333 | 0.8917 | 1 | 158 | 554 | 28.51986 | 0.29220 | 0 | 271 | 1076 | 25.18587 | 0.8163 | 1 | 155 | 1663 | 9.320505 | 0.3183 | 0 | 199 | 12.046005 | 0.47180 | 0 | 420 | 25.423729 | 0.60240 | 0 | 327 | 1279 | 25.56685 | 0.9151 | 1 | 137 | 375 | 36.53333 | 0.9108 | 1 | 0 | 1590 | 0.000000 | 0.09298 | 0 | 1428 | 1652 | 86.44068 | 0.8939 | 1 | 796 | 0 | 0.000000 | 0.1224 | 0 | 384 | 48.2412060 | 0.9897 | 1 | 19 | 554 | 3.4296029 | 0.7145 | 0 | 45 | 554 | 8.122744 | 0.6556 | 0 | 0 | 1652 | 0.00000 | 0.3640 | 0 | 2.52440 | 0.5138 | 2 | 2.99308 | 0.7515 | 2 | 0.8939 | 0.8856 | 1 | 2.8462 | 0.6637 | 1 | 9.25758 | 0.6790 | 6 | 1382 | 748 | 549 | 742 | 1382 | 53.69030 | 0.9560 | 1 | 40 | 511 | 7.827789 | 0.7730 | 1 | 110 | 402 | 27.363184 | 0.71780 | 0 | 45 | 147 | 30.61224 | 0.2307 | 0 | 155 | 549 | 28.23315 | 0.4773 | 0 | 181 | 905 | 20.00000 | 0.8253 | 1 | 232 | 1382 | 16.787265 | 0.8813 | 1 | 164 | 11.866860 | 0.27170 | 0 | 250 | 18.089725 | 0.26290 | 0 | 258 | 1132.0000 | 22.79152 | 0.8368 | 1 | 99 | 279.0000 | 35.48387 | 0.9162 | 1 | 33 | 1275 | 2.5882353 | 0.64520 | 0 | 1347 | 1382.0000 | 97.46744 | 0.9681 | 1 | 748 | 0 | 0.000000 | 0.1079 | 0 | 375 | 50.1336898 | 0.9922 | 1 | 0 | 549 | 0.0000000 | 0.09796 | 0 | 37 | 549.0000 | 6.739526 | 0.6039 | 0 | 0 | 1382 | 0.000000 | 0.1831 | 0 | 3.9129 | 0.8785 | 4 | 2.93280 | 0.7342 | 2 | 0.9681 | 0.9599 | 1 | 1.98506 | 0.2471 | 1 | 9.79886 | 0.7570 | 8 | 0 | 0 | 0 | 0 | 0 | Yes |
| 01015000300 | 01 | 015 | 000300 | AL | Alabama | Calhoun County | 3 | South Region | 6 | East South Central Division | 3074 | 1635 | 1330 | 1904 | 3067 | 62.08021 | 0.9710 | 1 | 293 | 1362 | 21.512482 | 0.96630 | 1 | 180 | 513 | 35.08772 | 0.65450 | 0 | 383 | 817 | 46.87882 | 0.5504 | 0 | 563 | 1330 | 42.33083 | 0.70280 | 0 | 720 | 2127 | 33.85049 | 0.9148 | 1 | 628 | 2835 | 22.151675 | 0.8076 | 1 | 380 | 12.361744 | 0.49340 | 0 | 713 | 23.194535 | 0.45030 | 0 | 647 | 2111 | 30.64898 | 0.9708 | 1 | 298 | 773 | 38.55110 | 0.9247 | 1 | 0 | 2878 | 0.000000 | 0.09298 | 0 | 2623 | 3074 | 85.32856 | 0.8883 | 1 | 1635 | 148 | 9.051988 | 0.6465 | 0 | 6 | 0.3669725 | 0.4502 | 0 | 68 | 1330 | 5.1127820 | 0.8082 | 1 | 303 | 1330 | 22.781955 | 0.9029 | 1 | 0 | 3074 | 0.00000 | 0.3640 | 0 | 4.36250 | 0.9430 | 4 | 2.93218 | 0.7233 | 2 | 0.8883 | 0.8800 | 1 | 3.1718 | 0.8070 | 2 | 11.35478 | 0.9009 | 9 | 2390 | 1702 | 1282 | 1287 | 2390 | 53.84937 | 0.9566 | 1 | 102 | 1066 | 9.568480 | 0.8541 | 1 | 158 | 609 | 25.944171 | 0.67520 | 0 | 286 | 673 | 42.49629 | 0.4856 | 0 | 444 | 1282 | 34.63339 | 0.6634 | 0 | 467 | 1685 | 27.71513 | 0.9180 | 1 | 369 | 2379 | 15.510719 | 0.8562 | 1 | 342 | 14.309623 | 0.40850 | 0 | 548 | 22.928870 | 0.57100 | 0 | 647 | 1831.0000 | 35.33588 | 0.9862 | 1 | 202 | 576.0000 | 35.06944 | 0.9130 | 1 | 16 | 2134 | 0.7497657 | 0.40690 | 0 | 1896 | 2390.0000 | 79.33054 | 0.8451 | 1 | 1702 | 96 | 5.640423 | 0.5329 | 0 | 0 | 0.0000000 | 0.2186 | 0 | 0 | 1282 | 0.0000000 | 0.09796 | 0 | 186 | 1282.0000 | 14.508580 | 0.8308 | 1 | 43 | 2390 | 1.799163 | 0.7727 | 1 | 4.2483 | 0.9395 | 4 | 3.28560 | 0.8773 | 2 | 0.8451 | 0.8379 | 1 | 2.45296 | 0.4602 | 2 | 10.83196 | 0.8718 | 9 | 0 | 0 | 0 | 0 | 0 | Yes |
| 01015000500 | 01 | 015 | 000500 | AL | Alabama | Calhoun County | 3 | South Region | 6 | East South Central Division | 1731 | 1175 | 743 | 1042 | 1619 | 64.36072 | 0.9767 | 1 | 124 | 472 | 26.271186 | 0.98460 | 1 | 136 | 461 | 29.50108 | 0.48970 | 0 | 163 | 282 | 57.80142 | 0.7919 | 1 | 299 | 743 | 40.24226 | 0.64910 | 0 | 340 | 1270 | 26.77165 | 0.8389 | 1 | 460 | 1794 | 25.641026 | 0.8722 | 1 | 271 | 15.655690 | 0.70190 | 0 | 368 | 21.259388 | 0.32190 | 0 | 507 | 1449 | 34.98965 | 0.9885 | 1 | 150 | 386 | 38.86010 | 0.9269 | 1 | 0 | 1677 | 0.000000 | 0.09298 | 0 | 1559 | 1731 | 90.06355 | 0.9123 | 1 | 1175 | 50 | 4.255319 | 0.5128 | 0 | 4 | 0.3404255 | 0.4480 | 0 | 0 | 743 | 0.0000000 | 0.1238 | 0 | 122 | 743 | 16.419919 | 0.8473 | 1 | 0 | 1731 | 0.00000 | 0.3640 | 0 | 4.32150 | 0.9362 | 4 | 3.03218 | 0.7679 | 2 | 0.9123 | 0.9038 | 1 | 2.2959 | 0.3818 | 1 | 10.56188 | 0.8244 | 8 | 940 | 907 | 488 | 586 | 940 | 62.34043 | 0.9815 | 1 | 59 | 297 | 19.865320 | 0.9833 | 1 | 100 | 330 | 30.303030 | 0.79220 | 1 | 58 | 158 | 36.70886 | 0.3497 | 0 | 158 | 488 | 32.37705 | 0.6020 | 0 | 199 | 795 | 25.03145 | 0.8930 | 1 | 118 | 940 | 12.553192 | 0.7770 | 1 | 246 | 26.170213 | 0.90530 | 1 | 118 | 12.553192 | 0.08233 | 0 | 383 | 822.5089 | 46.56484 | 0.9984 | 1 | 30 | 197.8892 | 15.16000 | 0.5363 | 0 | 0 | 889 | 0.0000000 | 0.09479 | 0 | 898 | 940.3866 | 95.49264 | 0.9489 | 1 | 907 | 0 | 0.000000 | 0.1079 | 0 | 2 | 0.2205072 | 0.4456 | 0 | 2 | 488 | 0.4098361 | 0.23670 | 0 | 146 | 487.6463 | 29.939736 | 0.9404 | 1 | 0 | 940 | 0.000000 | 0.1831 | 0 | 4.2368 | 0.9379 | 4 | 2.61712 | 0.5593 | 2 | 0.9489 | 0.9409 | 1 | 1.91370 | 0.2196 | 1 | 9.71652 | 0.7468 | 8 | 0 | 0 | 0 | 0 | 0 | Yes |
| 01015000600 | 01 | 015 | 000600 | AL | Alabama | Calhoun County | 3 | South Region | 6 | East South Central Division | 2571 | 992 | 796 | 1394 | 2133 | 65.35396 | 0.9789 | 1 | 263 | 905 | 29.060773 | 0.98990 | 1 | 121 | 306 | 39.54248 | 0.75940 | 1 | 209 | 490 | 42.65306 | 0.4481 | 0 | 330 | 796 | 41.45729 | 0.68030 | 0 | 641 | 1556 | 41.19537 | 0.9554 | 1 | 416 | 1760 | 23.636364 | 0.8383 | 1 | 220 | 8.556982 | 0.24910 | 0 | 584 | 22.714897 | 0.41610 | 0 | 539 | 1353 | 39.83740 | 0.9955 | 1 | 243 | 466 | 52.14592 | 0.9783 | 1 | 30 | 2366 | 1.267963 | 0.48990 | 0 | 1944 | 2571 | 75.61260 | 0.8440 | 1 | 992 | 164 | 16.532258 | 0.7673 | 1 | 8 | 0.8064516 | 0.5110 | 0 | 46 | 796 | 5.7788945 | 0.8329 | 1 | 184 | 796 | 23.115578 | 0.9049 | 1 | 614 | 2571 | 23.88176 | 0.9734 | 1 | 4.44280 | 0.9548 | 4 | 3.12890 | 0.8088 | 2 | 0.8440 | 0.8362 | 1 | 3.9895 | 0.9792 | 4 | 12.40520 | 0.9696 | 11 | 1950 | 964 | 719 | 837 | 1621 | 51.63479 | 0.9467 | 1 | 157 | 652 | 24.079755 | 0.9922 | 1 | 22 | 364 | 6.043956 | 0.01547 | 0 | 129 | 355 | 36.33803 | 0.3420 | 0 | 151 | 719 | 21.00139 | 0.2303 | 0 | 363 | 1387 | 26.17159 | 0.9048 | 1 | 351 | 1613 | 21.760694 | 0.9435 | 1 | 249 | 12.769231 | 0.32090 | 0 | 356 | 18.256410 | 0.27140 | 0 | 332 | 1259.7041 | 26.35540 | 0.9135 | 1 | 136 | 435.6156 | 31.22018 | 0.8775 | 1 | 0 | 1891 | 0.0000000 | 0.09479 | 0 | 1463 | 1949.9821 | 75.02633 | 0.8219 | 1 | 964 | 14 | 1.452282 | 0.3459 | 0 | 8 | 0.8298755 | 0.5269 | 0 | 19 | 719 | 2.6425591 | 0.61120 | 0 | 197 | 719.0542 | 27.397100 | 0.9316 | 1 | 329 | 1950 | 16.871795 | 0.9655 | 1 | 4.0175 | 0.9001 | 4 | 2.47809 | 0.4764 | 2 | 0.8219 | 0.8149 | 1 | 3.38110 | 0.8712 | 2 | 10.69859 | 0.8583 | 9 | 0 | 0 | 0 | 0 | 0 | Yes |
| 01015002101 | 01 | 015 | 002101 | AL | Alabama | Calhoun County | 3 | South Region | 6 | East South Central Division | 3872 | 1454 | 1207 | 1729 | 2356 | 73.38710 | 0.9916 | 1 | 489 | 2020 | 24.207921 | 0.97860 | 1 | 20 | 168 | 11.90476 | 0.02541 | 0 | 718 | 1039 | 69.10491 | 0.9332 | 1 | 738 | 1207 | 61.14333 | 0.96900 | 1 | 113 | 725 | 15.58621 | 0.6035 | 0 | 664 | 3943 | 16.839970 | 0.6495 | 0 | 167 | 4.313016 | 0.05978 | 0 | 238 | 6.146694 | 0.02255 | 0 | 264 | 2359 | 11.19118 | 0.3027 | 0 | 94 | 263 | 35.74144 | 0.9050 | 1 | 46 | 3769 | 1.220483 | 0.48250 | 0 | 1601 | 3872 | 41.34814 | 0.6572 | 0 | 1454 | 761 | 52.338377 | 0.9504 | 1 | 65 | 4.4704264 | 0.6738 | 0 | 5 | 1207 | 0.4142502 | 0.2791 | 0 | 113 | 1207 | 9.362055 | 0.7004 | 0 | 1516 | 3872 | 39.15289 | 0.9860 | 1 | 4.19220 | 0.9133 | 3 | 1.77253 | 0.1304 | 1 | 0.6572 | 0.6511 | 0 | 3.5897 | 0.9337 | 2 | 10.21163 | 0.7885 | 6 | 3238 | 1459 | 1014 | 1082 | 1836 | 58.93246 | 0.9735 | 1 | 251 | 1403 | 17.890235 | 0.9767 | 1 | 31 | 155 | 20.000000 | 0.44920 | 0 | 515 | 859 | 59.95343 | 0.8554 | 1 | 546 | 1014 | 53.84615 | 0.9535 | 1 | 134 | 916 | 14.62882 | 0.7033 | 0 | 251 | 3238 | 7.751699 | 0.5588 | 0 | 167 | 5.157505 | 0.03597 | 0 | 169 | 5.219271 | 0.02111 | 0 | 323 | 1667.0000 | 19.37612 | 0.7205 | 0 | 94 | 277.0000 | 33.93502 | 0.9040 | 1 | 0 | 3164 | 0.0000000 | 0.09479 | 0 | 1045 | 3238.0000 | 32.27301 | 0.5125 | 0 | 1459 | 607 | 41.603838 | 0.9185 | 1 | 65 | 4.4551062 | 0.6949 | 0 | 24 | 1014 | 2.3668639 | 0.57900 | 0 | 85 | 1014.0000 | 8.382643 | 0.6775 | 0 | 1402 | 3238 | 43.298332 | 0.9876 | 1 | 4.1658 | 0.9263 | 3 | 1.77637 | 0.1225 | 1 | 0.5125 | 0.5082 | 0 | 3.85750 | 0.9661 | 2 | 10.31217 | 0.8160 | 6 | 0 | 0 | 0 | 0 | 0 | Yes |
svi_national_lihtc_county_sum <- summarize_county_lihtc(svi_national_lihtc)
svi_national_lihtc_county_sum %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| State | County | Division | post10_lihtc_project_cnt | tract_cnt | post10_lihtc_project_dollars | post10_lihtc_dollars_formatted |
|---|---|---|---|---|---|---|
| AK | Bethel Census Area | Pacific Division | 0 | 2 | 0 | \$0 |
| AK | Dillingham Census Area | Pacific Division | 0 | 1 | 0 | \$0 |
| AK | Kenai Peninsula Borough | Pacific Division | 0 | 1 | 0 | \$0 |
| AK | Nome Census Area | Pacific Division | 0 | 1 | 0 | \$0 |
| AK | Yukon-Koyukuk Census Area | Pacific Division | 0 | 2 | 0 | \$0 |
| AL | Barbour County | East South Central Division | 0 | 1 | 0 | \$0 |
svi_divisional_lihtc_county_sum <- summarize_county_lihtc(svi_divisional_lihtc)
svi_divisional_lihtc_county_sum %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| State | County | Division | post10_lihtc_project_cnt | tract_cnt | post10_lihtc_project_dollars | post10_lihtc_dollars_formatted |
|---|---|---|---|---|---|---|
| AK | Bethel Census Area | Pacific Division | 0 | 2 | 0 | \$0 |
| AK | Dillingham Census Area | Pacific Division | 0 | 1 | 0 | \$0 |
| AK | Kenai Peninsula Borough | Pacific Division | 0 | 1 | 0 | \$0 |
| AK | Nome Census Area | Pacific Division | 0 | 1 | 0 | \$0 |
| AK | Yukon-Koyukuk Census Area | Pacific Division | 0 | 2 | 0 | \$0 |
| CA | Alameda County | Pacific Division | 1 | 23 | 1590984 | \$1,590,984 |
# Create data frame of LIHTC eligible tracts 2010 nationally
svi_national_lihtc10 <- svi_national_lihtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county,
state, state_name, county, region_number, region, division_number,
division, F_TOTAL_10, E_TOTPOP_10) %>% rename("F_TOTAL" = "F_TOTAL_10")
# Count national-level SVI flags for 2010, create unified fips column
svi_2010_national_county_flags_lihtc <- flag_summarize(svi_national_lihtc10, "E_TOTPOP_10") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")
# Add suffix to flag columns 2010
colnames(svi_2010_national_county_flags_lihtc)[11:15] <- paste0(colnames(svi_2010_national_county_flags_lihtc)[11:15], 10)
# Create data frame of LIHTC eligible tracts 2020 nationally
svi_national_lihtc20 <- svi_national_lihtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county,
state, state_name, county, region_number, region, division_number,
division, F_TOTAL_20, E_TOTPOP_20) %>% rename("F_TOTAL" = "F_TOTAL_20")
# Count national-level SVI flags for 2020, create unified fips column
svi_2020_national_county_flags_lihtc <- flag_summarize(svi_national_lihtc20, "E_TOTPOP_20") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")
# Identify needed columns for 2020, add suffix
colnames(svi_2020_national_county_flags_lihtc)[11:15] <- paste0(colnames(svi_2020_national_county_flags_lihtc)[11:15], "20")
# Filter to needed columns for 2020 to avoid duplicate column column names
svi_2020_national_county_flags_join_lihtc <- svi_2020_national_county_flags_lihtc %>% ungroup() %>% select("fips_county_st", all_of(colnames(svi_2020_national_county_flags_lihtc)[11:15]))
# Join 2010 and 2020 data
svi_national_county_flags_lihtc <- left_join(svi_2010_national_county_flags_lihtc, svi_2020_national_county_flags_join_lihtc, join_by("fips_county_st" == "fips_county_st"))
svi_national_county_flags_lihtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| fips_county_st | FIPS_st | FIPS_county | state | state_name | county | region_number | region | division_number | division | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 01005 | 01 | 005 | AL | Alabama | Barbour County | 3 | South Region | 6 | East South Central Division | 6 | 1753 | 0.0034227 | 0.2 | 0.8 | 7 | 1527 | 0.0045842 | 0.2 | 1.0 |
| 01011 | 01 | 011 | AL | Alabama | Bullock County | 3 | South Region | 6 | East South Central Division | 6 | 1652 | 0.0036320 | 0.2 | 0.8 | 8 | 1382 | 0.0057887 | 0.4 | 1.0 |
| 01015 | 01 | 015 | AL | Alabama | Calhoun County | 3 | South Region | 6 | East South Central Division | 40 | 15130 | 0.0026438 | 0.8 | 0.6 | 37 | 11783 | 0.0031401 | 0.8 | 0.8 |
| 01023 | 01 | 023 | AL | Alabama | Choctaw County | 3 | South Region | 6 | East South Central Division | 12 | 5578 | 0.0021513 | 0.6 | 0.4 | 15 | 5412 | 0.0027716 | 0.6 | 0.8 |
| 01031 | 01 | 031 | AL | Alabama | Coffee County | 3 | South Region | 6 | East South Central Division | 12 | 8139 | 0.0014744 | 0.6 | 0.2 | 13 | 8517 | 0.0015264 | 0.6 | 0.2 |
| 01033 | 01 | 033 | AL | Alabama | Colbert County | 3 | South Region | 6 | East South Central Division | 10 | 1983 | 0.0050429 | 0.4 | 1.0 | 8 | 1931 | 0.0041429 | 0.4 | 1.0 |
svi_national_county_lihtc <- left_join(svi_national_lihtc_county_sum,
svi_national_county_flags_lihtc,
join_by("State" == "state", "County" == "county",
"Division" == "division"))
svi_national_county_lihtc$post10_lihtc_project_cnt[is.na(svi_national_county_lihtc$post10_lihtc_project_cnt)] <- 0
svi_national_county_lihtc$county_name <- paste0(svi_national_county_lihtc$County, ", ", svi_national_county_lihtc$State)
svi_national_county_lihtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| State | County | Division | post10_lihtc_project_cnt | tract_cnt | post10_lihtc_project_dollars | post10_lihtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AK | Bethel Census Area | Pacific Division | 0 | 2 | 0 | \$0 | 02050 | 02 | 050 | Alaska | 4 | West Region | 9 | 18 | 10867 | 0.0016564 | 0.6 | 0.4 | 20 | 11715 | 0.0017072 | 0.8 | 0.4 | Bethel Census Area, AK |
| AK | Dillingham Census Area | Pacific Division | 0 | 1 | 0 | \$0 | 02070 | 02 | 070 | Alaska | 4 | West Region | 9 | 9 | 2569 | 0.0035033 | 0.4 | 0.8 | 10 | 2801 | 0.0035702 | 0.4 | 0.8 | Dillingham Census Area, AK |
| AK | Kenai Peninsula Borough | Pacific Division | 0 | 1 | 0 | \$0 | 02122 | 02 | 122 | Alaska | 4 | West Region | 9 | 7 | 251 | 0.0278884 | 0.2 | 1.0 | 8 | 531 | 0.0150659 | 0.4 | 1.0 | Kenai Peninsula Borough, AK |
| AK | Nome Census Area | Pacific Division | 0 | 1 | 0 | \$0 | 02180 | 02 | 180 | Alaska | 4 | West Region | 9 | 9 | 5766 | 0.0015609 | 0.4 | 0.2 | 10 | 5901 | 0.0016946 | 0.4 | 0.4 | Nome Census Area, AK |
| AK | Yukon-Koyukuk Census Area | Pacific Division | 0 | 2 | 0 | \$0 | 02290 | 02 | 290 | Alaska | 4 | West Region | 9 | 18 | 2300 | 0.0078261 | 0.6 | 1.0 | 21 | 2153 | 0.0097538 | 0.8 | 1.0 | Yukon-Koyukuk Census Area, AK |
| AL | Barbour County | East South Central Division | 0 | 1 | 0 | \$0 | 01005 | 01 | 005 | Alabama | 3 | South Region | 6 | 6 | 1753 | 0.0034227 | 0.2 | 0.8 | 7 | 1527 | 0.0045842 | 0.2 | 1.0 | Barbour County, AL |
# Create data frame of LIHTC eligible tracts 2020 nationally
svi_divisional_lihtc10 <- svi_divisional_lihtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county,
state, state_name, county, region_number, region, division_number,
division, F_TOTAL_10, E_TOTPOP_10) %>% rename("F_TOTAL" = "F_TOTAL_10")
# Count divisional-level SVI flags for 2010, create unified fips column
svi_2010_divisional_county_flags_lihtc <- flag_summarize(svi_divisional_lihtc10, "E_TOTPOP_10") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")
# Add suffix to flag columns 2010
colnames(svi_2010_divisional_county_flags_lihtc)[11:15] <- paste0(colnames(svi_2010_divisional_county_flags_lihtc)[11:15], "10")
# Create data frame of LIHTC eligible tracts 2020 nationally
svi_divisional_lihtc20 <- svi_divisional_lihtc %>% select(GEOID_2010_trt, FIPS_st, FIPS_county,
state, state_name, county, region_number, region, division_number,
division, F_TOTAL_20, E_TOTPOP_20) %>% rename("F_TOTAL" = "F_TOTAL_20")
# Count divisional-level SVI flags for 2020, create unified fips column
svi_2020_divisional_county_flags_lihtc <- flag_summarize(svi_divisional_lihtc20, "E_TOTPOP_20") %>% unite("fips_county_st", FIPS_st:FIPS_county, remove = FALSE, sep="")
# Identify needed columns for 2020
colnames(svi_2020_divisional_county_flags_lihtc)[11:15] <- paste0(colnames(svi_2020_divisional_county_flags_lihtc)[11:15], "20")
# Filter to needed columns for 2020 to avoid duplicate column column names
svi_2020_divisional_county_flags_join_lihtc <- svi_2020_divisional_county_flags_lihtc %>% ungroup() %>% select("fips_county_st", all_of(colnames(svi_2020_divisional_county_flags_lihtc)[11:15]))
# Join 2010 and 2020 data
svi_divisional_county_flags_lihtc <- left_join(svi_2010_divisional_county_flags_lihtc, svi_2020_divisional_county_flags_join_lihtc, join_by("fips_county_st" == "fips_county_st"))
svi_divisional_county_flags_lihtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| fips_county_st | FIPS_st | FIPS_county | state | state_name | county | region_number | region | division_number | division | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 02050 | 02 | 050 | AK | Alaska | Bethel Census Area | 4 | West Region | 9 | Pacific Division | 18 | 10867 | 0.0016564 | 0.6 | 0.4 | 20 | 11715 | 0.0017072 | 0.6 | 0.6 |
| 02070 | 02 | 070 | AK | Alaska | Dillingham Census Area | 4 | West Region | 9 | Pacific Division | 9 | 2569 | 0.0035033 | 0.2 | 1.0 | 9 | 2801 | 0.0032131 | 0.4 | 1.0 |
| 02122 | 02 | 122 | AK | Alaska | Kenai Peninsula Borough | 4 | West Region | 9 | Pacific Division | 6 | 251 | 0.0239044 | 0.2 | 1.0 | 8 | 531 | 0.0150659 | 0.2 | 1.0 |
| 02180 | 02 | 180 | AK | Alaska | Nome Census Area | 4 | West Region | 9 | Pacific Division | 9 | 5766 | 0.0015609 | 0.2 | 0.4 | 9 | 5901 | 0.0015252 | 0.4 | 0.4 |
| 02290 | 02 | 290 | AK | Alaska | Yukon-Koyukuk Census Area | 4 | West Region | 9 | Pacific Division | 17 | 2300 | 0.0073913 | 0.6 | 1.0 | 19 | 2153 | 0.0088249 | 0.6 | 1.0 |
| 06001 | 06 | 001 | CA | California | Alameda County | 4 | West Region | 9 | Pacific Division | 186 | 92323 | 0.0020147 | 1.0 | 0.6 | 170 | 101788 | 0.0016701 | 1.0 | 0.6 |
svi_divisional_county_lihtc <- left_join(svi_divisional_lihtc_county_sum,
svi_divisional_county_flags_lihtc,
join_by("State" == "state", "County" == "county",
"Division" == "division"))
svi_divisional_county_lihtc$post10_lihtc_project_cnt[is.na(svi_divisional_county_lihtc $post10_lihtc_project_cnt)] <- 0
svi_divisional_county_lihtc$county_name <- paste0(svi_divisional_county_lihtc$County, ", ", svi_divisional_county_lihtc$State)
svi_divisional_county_lihtc %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| State | County | Division | post10_lihtc_project_cnt | tract_cnt | post10_lihtc_project_dollars | post10_lihtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AK | Bethel Census Area | Pacific Division | 0 | 2 | 0 | \$0 | 02050 | 02 | 050 | Alaska | 4 | West Region | 9 | 18 | 10867 | 0.0016564 | 0.6 | 0.4 | 20 | 11715 | 0.0017072 | 0.6 | 0.6 | Bethel Census Area, AK |
| AK | Dillingham Census Area | Pacific Division | 0 | 1 | 0 | \$0 | 02070 | 02 | 070 | Alaska | 4 | West Region | 9 | 9 | 2569 | 0.0035033 | 0.2 | 1.0 | 9 | 2801 | 0.0032131 | 0.4 | 1.0 | Dillingham Census Area, AK |
| AK | Kenai Peninsula Borough | Pacific Division | 0 | 1 | 0 | \$0 | 02122 | 02 | 122 | Alaska | 4 | West Region | 9 | 6 | 251 | 0.0239044 | 0.2 | 1.0 | 8 | 531 | 0.0150659 | 0.2 | 1.0 | Kenai Peninsula Borough, AK |
| AK | Nome Census Area | Pacific Division | 0 | 1 | 0 | \$0 | 02180 | 02 | 180 | Alaska | 4 | West Region | 9 | 9 | 5766 | 0.0015609 | 0.2 | 0.4 | 9 | 5901 | 0.0015252 | 0.4 | 0.4 | Nome Census Area, AK |
| AK | Yukon-Koyukuk Census Area | Pacific Division | 0 | 2 | 0 | \$0 | 02290 | 02 | 290 | Alaska | 4 | West Region | 9 | 17 | 2300 | 0.0073913 | 0.6 | 1.0 | 19 | 2153 | 0.0088249 | 0.6 | 1.0 | Yukon-Koyukuk Census Area, AK |
| CA | Alameda County | Pacific Division | 1 | 23 | 1590984 | \$1,590,984 | 06001 | 06 | 001 | California | 4 | West Region | 9 | 186 | 92323 | 0.0020147 | 1.0 | 0.6 | 170 | 101788 | 0.0016701 | 1.0 | 0.6 | Alameda County, CA |
Exploratory Data Analysis
NMTC in Pacific Division
svi_divisional_county_nmtc_projects <- svi_divisional_county_nmtc %>% filter(post10_nmtc_project_cnt > 0)
Data Summary
summary(svi_divisional_county_nmtc_projects$flag_count10)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 26.25 56.00 301.68 199.75 9210.00
summary(svi_divisional_county_nmtc_projects$post10_nmtc_project_dollars)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 669550 9561257 18612500 41859846 35824250 987407086
There’s a wide range of flags among counties in the Pacific Division. Some counties have as few as 1 flag or as many as 9,210 flags (Los Angeles County). The next highest number of flags after the maximum is 1,451. This explains the large difference between the median (56 flags) and mean (302 flags); the median is a more realistic average for the division because the mean is dragged significantly higher by the maximum.
Similarly, NMTC project award totals in Pacific Division counties ranged from $667,550 to $987,407,086. Los Angeles County accounts for the maximum cost here as well. The next highest county total comes in at $221,738,411. Similar to the flags, Los Angeles County’s total is an outlier that skews the data to the right, creating a significant difference between the median and mean.
Let’s visualize this effect in a scatterplot.
# Scatterplot
# y is our independent variable (NMTC Project Dollars),
# x is our dependent variable (SVI flag count)
ggplot2::ggplot(svi_divisional_county_nmtc_projects,
aes(x=flag_count10,
y=post10_nmtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())

Based on the summary statistics and scatterplot, the NMTC data for the Pacific Division may have a leptokurtic distribution. This is important to note because extremes can distort correlation, regression, and k-means clustering. However, this analysis does not exclude Los Angeles County as an outlier because it’s a natural part of the population/geography under study. In fact, Los Angeles is the most populous county in the United States, and a 2023 U.S. Census Bureau report states that 374 tracts within the county, representing 1.6 million people, have experienced persistent poverty. We can predict that, at least by count, the population need and number of qualified projects for tax credits like the NMTC may be higher in LAC than in most other counties in the division.
# Pearson's r calculation
cor(svi_divisional_county_nmtc_projects$flag_count10, svi_divisional_county_nmtc_projects$post10_nmtc_project_dollars, method = "pearson")
## [1] 0.9603179
The correlation between flag count and project award totals is very strong and positive in the Pacific Division. If we exclude LAC, the correlation drops meaningfully.
svi_d_c_temp <- svi_divisional_county_nmtc_projects %>%
filter(County != "Los Angeles County")
cor(svi_d_c_temp$flag_count10, svi_d_c_temp$post10_nmtc_project_dollars, method = "pearson")
## [1] 0.5307725
The test excluding LAC returns a moderate, positive correlation, but the association does not disappear or reverse. Still, it’s a pretty large drop. Let’s do a couple more tests.
svi_d_c_temp_CAnotLAC <- svi_divisional_county_nmtc_projects %>%
filter(State == "CA") %>%
filter(County != "Los Angeles County")
cor(svi_d_c_temp_CAnotLAC$flag_count10, svi_d_c_temp_CAnotLAC$post10_nmtc_project_dollars, method = "pearson")
## [1] 0.5461931
svi_d_c_temp_notCA <- svi_divisional_county_nmtc_projects %>%
filter(State != "CA")
cor(svi_d_c_temp_notCA$flag_count10, svi_d_c_temp_notCA$post10_nmtc_project_dollars, method = "pearson")
## [1] 0.5248953
These tests show that correlation is similar among California counties (when excluding LAC) and the Pacific Division (when excluding all CA counties). In both cases, there is a moderate and positive association. What is so unique about LAC? Can it be explained by just its high population and the number of high value projects? In a 2022 neighborhood level analysis of California’s LIHTC program, Basolo et. al found that:
The exclusion of LAC from the state analysis produces one important change in the results. Without LAC in the analysis, there is no statistically significant relationship between neighborhood economic hardship and the location of LIHTC developments. In other words, LIHTC housing in California, except for LAC, is not more likely to be in disadvantaged neighborhoods.
While the Basolo et. al study uses a measure of economic hardship for the LIHTC, their result implies that programmatic and/or market conditions in LAC could also influence this analysis due to overlapping measures between the economic hardship index and SVI. Something is different about LAC, but Basolo et. al also struggled to identify what. Our NMTC data tentatively supports the idea that more than just “population” explains LAC as an outlier. If this holds true, we can expect to see this occur in the LIHTC section below as well.
As it stands, in the Pacific Division, counties with more social vulnerability flags in 2010 received more NMTC dollars in 2011-2020. The boxplot below further visualizes the skewed distribution and identifies other outliers. However, the data does not adjust the number of flags by population, so the list of outliers below also represents the most populous counties in the Pacific Division.
boxplot(svi_divisional_county_nmtc_projects$flag_count10)

boxplot.stats(svi_divisional_county_nmtc_projects$flag_count10)$out %>% sort(decreasing = TRUE)
## [1] 9210 1451 1305 978 931 831 815 669 596
svi_divisional_county_nmtc_projects %>%
select(county_name, flag_count10, post10_nmtc_dollars_formatted) %>%
arrange(desc(flag_count10)) %>%
head(9) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| county_name | flag_count10 | post10_nmtc_dollars_formatted |
|---|---|---|
| Los Angeles County, CA | 9210 | \$987,407,086 |
| Riverside County, CA | 1451 | \$40,871,824 |
| San Diego County, CA | 1305 | \$221,738,411 |
| Orange County, CA | 978 | \$12,463,033 |
| Fresno County, CA | 931 | \$115,258,480 |
| Sacramento County, CA | 831 | \$3,630,000 |
| Alameda County, CA | 815 | \$119,049,224 |
| Kern County, CA | 669 | \$31,290,000 |
| Santa Clara County, CA | 596 | \$41,829,813 |
K-Means Clustering
svi_divisional_nmtc_cluster <- svi_divisional_county_nmtc_projects %>%
select(county_name, post10_nmtc_project_dollars,
flag_count10) %>%
remove_rownames %>%
column_to_rownames(var="county_name")
# Remove nulls, if in dataset
svi_divisional_nmtc_cluster <- na.omit(svi_divisional_nmtc_cluster)
# Scale numeric variables
svi_divisional_nmtc_cluster <- scale(svi_divisional_nmtc_cluster)
svi_divisional_nmtc_cluster %>% head(5)
## post10_nmtc_project_dollars flag_count10
## Aleutians East Borough, AK -0.2292355 -0.2754180
## Anchorage Municipality, AK -0.2816092 -0.2311900
## Wade Hampton Census Area, AK -0.1795408 -0.2744770
## Yukon-Koyukuk Census Area, AK -0.3005472 -0.2594206
## Alameda County, CA 0.6780208 0.4830462
set.seed(123)
k2_nmtc_div <- kmeans(svi_divisional_nmtc_cluster, centers = 2, nstart = 25)
set.seed(123)
k3_nmtc_div <- kmeans(svi_divisional_nmtc_cluster, centers = 3, nstart = 25)
set.seed(123)
k4_nmtc_div <- kmeans(svi_divisional_nmtc_cluster, centers = 4, nstart = 25)
set.seed(123)
k5_nmtc_div <- kmeans(svi_divisional_nmtc_cluster, centers = 5, nstart = 25)
# plots to compare
p_k2_nmtc_div <- factoextra::fviz_cluster(k2_nmtc_div, geom = "point", data = svi_divisional_nmtc_cluster) + ggtitle("k = 2 w/ LAC")
p_k3_nmtc_div <- factoextra::fviz_cluster(k3_nmtc_div, geom = "point", data = svi_divisional_nmtc_cluster) + ggtitle("k = 3 w/ LAC")
p_k4_nmtc_div <- factoextra::fviz_cluster(k4_nmtc_div, geom = "point", data = svi_divisional_nmtc_cluster) + ggtitle("k = 4 w/ LAC")
p_k5_nmtc_div <- factoextra::fviz_cluster(k5_nmtc_div, geom = "point", data = svi_divisional_nmtc_cluster) + ggtitle("k = 5 w/ LAC")
grid.arrange(p_k2_nmtc_div, p_k3_nmtc_div, p_k4_nmtc_div, p_k5_nmtc_div, nrow = 2)

elbow_plot(svi_divisional_nmtc_cluster)
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10
## [1] 11
## [1] 12
## [1] 13
## [1] 14
## [1] 15

LAC’s inclusion degrades the visibility of the k-means clusters in the bottom left of the chart. It also impacts the usability of the elbow plot, making it meaningless for us. This is because the dataset violates the k-means clustering assumption that data has no outliers (IBM, n.d.). If we accepted the validity of this elbow plot, it would mean there are two groups: LAC by itself and the remaining 77 counties in the Pacific Division in a group. This is pretty unlikely.
In every iteration of k = n, LAC comprises its own cluster. This is good in the sense that the k-means isn’t clustering a widely spaced group with LAC. However, we struggle to see the centroids in the bottom left corner, and our elbow plot isn’t functional. We can force it by removing LAC, then add 1 to that elbow plot’s number to add LAC back in. This is not valid according to the original elbow plot, but technically, the model is already overfitted because k-means is not the ideal clustering method for the Pacific Division when including LAC for the aforementioned reasons.
svi_divisional_nmtc_cluster2 <- svi_divisional_county_nmtc_projects %>%
select(county_name, post10_nmtc_project_dollars,
flag_count10) %>%
filter(county_name != "Los Angeles County, CA") %>%
remove_rownames %>%
column_to_rownames(var="county_name")
# Remove nulls, if in dataset
svi_divisional_nmtc_cluster2 <- na.omit(svi_divisional_nmtc_cluster2)
# Scale numeric variables
svi_divisional_nmtc_cluster2 <- scale(svi_divisional_nmtc_cluster2)
svi_divisional_nmtc_cluster2 %>% head(5)
## post10_nmtc_project_dollars flag_count10
## Aleutians East Borough, AK -0.3964835 -0.6021680
## Anchorage Municipality, AK -0.5675732 -0.4422586
## Wade Hampton Census Area, AK -0.2341456 -0.5987657
## Yukon-Koyukuk Census Area, AK -0.6294380 -0.5443284
## Alameda County, CA 2.5672545 2.1401091
set.seed(123)
k2_nmtc_div2 <- kmeans(svi_divisional_nmtc_cluster2, centers = 2, nstart = 25)
set.seed(123)
k3_nmtc_div2 <- kmeans(svi_divisional_nmtc_cluster2, centers = 3, nstart = 25)
set.seed(123)
k4_nmtc_div2 <- kmeans(svi_divisional_nmtc_cluster2, centers = 4, nstart = 25)
set.seed(123)
k5_nmtc_div2 <- kmeans(svi_divisional_nmtc_cluster2, centers = 5, nstart = 25)
# plots to compare
p_k2_nmtc_div2 <- factoextra::fviz_cluster(k2_nmtc_div2, geom = "point", data = svi_divisional_nmtc_cluster2) + ggtitle("k = 2 w/o LAC")
p_k3_nmtc_div2 <- factoextra::fviz_cluster(k3_nmtc_div2, geom = "point", data = svi_divisional_nmtc_cluster2) + ggtitle("k = 3 w/o LAC")
p_k4_nmtc_div2 <- factoextra::fviz_cluster(k4_nmtc_div2, geom = "point", data = svi_divisional_nmtc_cluster2) + ggtitle("k = 4 w/o LAC")
p_k5_nmtc_div2 <- factoextra::fviz_cluster(k5_nmtc_div2, geom = "point", data = svi_divisional_nmtc_cluster2) + ggtitle("k = 5 w/o LAC")
grid.arrange(p_k2_nmtc_div2, p_k3_nmtc_div2, p_k4_nmtc_div2, p_k5_nmtc_div2, nrow = 2)

elbow_plot(svi_divisional_nmtc_cluster2)
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10
## [1] 11
## [1] 12
## [1] 13
## [1] 14
## [1] 15

Spacing decreases after 4 clusters, so we’ll add 1 cluster to account
for the outlier in its own group for a total of 5 clusters. We can see
that k = 4 in svi_divisional_nmtc_cluster2 overlaps with k = 5 in
svi_divisional_nmtc_cluster after we account for the outlier as the
fifth cluster. So k5_nmtc_div will serve as the best cluster matrix.
grid.arrange(p_k4_nmtc_div2, p_k5_nmtc_div, nrow = 1)

p_k5_nmtc_div

svi_divisional_nmtc_cluster_label <- as.data.frame(svi_divisional_nmtc_cluster) %>%
rownames_to_column(var = "county_name") %>%
as_tibble() %>%
mutate(cluster = k5_nmtc_div$cluster) %>%
select(county_name, cluster)
svi_divisional_county_nmtc_projects2 <- left_join(svi_divisional_county_nmtc_projects, svi_divisional_nmtc_cluster_label, join_by(county_name == county_name))
# View county counts in each cluster
table(svi_divisional_county_nmtc_projects2$cluster)
##
## 1 2 3 4 5
## 5 57 12 1 3
Cluster 1
# Cluster 1 Scatterplot
# y is our independent variable (NMTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 1) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_nmtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())

svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 1) %>%
select(flag_count10,post10_nmtc_project_dollars) %>%
cor(method = "pearson")
## flag_count10 post10_nmtc_project_dollars
## flag_count10 1.0000000 0.1134538
## post10_nmtc_project_dollars 0.1134538 1.0000000
Cluster 1 shows no association.
svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 1) %>%
select(county_name, flag_count10, post10_nmtc_dollars_formatted) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| county_name | flag_count10 | post10_nmtc_dollars_formatted |
|---|---|---|
| Kern County, CA | 669 | \$31,290,000 |
| Orange County, CA | 978 | \$12,463,033 |
| Riverside County, CA | 1451 | \$40,871,824 |
| Sacramento County, CA | 831 | \$3,630,000 |
| Santa Clara County, CA | 596 | \$41,829,813 |
Cluster 2
# Cluster 2 Scatterplot
# y is our independent variable (NMTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 2) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_nmtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())

svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 2) %>%
select(flag_count10,post10_nmtc_project_dollars) %>%
cor(method = "pearson")
## flag_count10 post10_nmtc_project_dollars
## flag_count10 1.0000000 0.1464225
## post10_nmtc_project_dollars 0.1464225 1.0000000
Cluster 2 shows no association between data points. This cluster represents more than 73% of the counties in the Pacific Region.
svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 2) %>%
select(county_name, flag_count10, post10_nmtc_dollars_formatted) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| county_name | flag_count10 | post10_nmtc_dollars_formatted |
|---|---|---|
| Aleutians East Borough, AK | 9 | \$15,762,500 |
| Anchorage Municipality, AK | 56 | \$9,800,000 |
| Wade Hampton Census Area, AK | 10 | \$21,420,000 |
| Yukon-Koyukuk Census Area, AK | 26 | \$7,644,000 |
| Butte County, CA | 171 | \$22,355,000 |
| Contra Costa County, CA | 346 | \$24,726,000 |
| Del Norte County, CA | 25 | \$39,615,000 |
| Humboldt County, CA | 75 | \$22,330,000 |
| Madera County, CA | 117 | \$10,864,000 |
| Merced County, CA | 283 | \$18,982,900 |
| Napa County, CA | 36 | \$29,651,000 |
| Santa Barbara County, CA | 231 | \$9,568,778 |
| Santa Cruz County, CA | 106 | \$8,342,000 |
| Siskiyou County, CA | 56 | \$18,625,000 |
| Solano County, CA | 163 | \$8,500,000 |
| Stanislaus County, CA | 394 | \$8,614,600 |
| Tehama County, CA | 40 | \$13,000,000 |
| Ventura County, CA | 396 | \$20,200,000 |
| Yolo County, CA | 83 | \$6,790,000 |
| Honolulu County, HI | 343 | \$35,830,900 |
| Maui County, HI | 38 | \$22,038,000 |
| Baker County, OR | 16 | \$8,148,000 |
| Clackamas County, OR | 54 | \$980,000 |
| Clatsop County, OR | 9 | \$11,640,000 |
| Coos County, OR | 38 | \$35,804,300 |
| Crook County, OR | 12 | \$5,820,000 |
| Curry County, OR | 9 | \$12,610,000 |
| Hood River County, OR | 1 | \$16,100,000 |
| Jackson County, OR | 102 | \$9,558,750 |
| Josephine County, OR | 54 | \$20,480,000 |
| Klamath County, OR | 55 | \$6,547,500 |
| Lake County, OR | 9 | \$7,275,000 |
| Lane County, OR | 175 | \$28,810,000 |
| Lincoln County, OR | 31 | \$2,988,434 |
| Linn County, OR | 41 | \$17,640,000 |
| Malheur County, OR | 24 | \$19,730,000 |
| Marion County, OR | 110 | \$4,800,000 |
| Polk County, OR | 17 | \$12,480,000 |
| Umatilla County, OR | 26 | \$29,975,000 |
| Wallowa County, OR | 4 | \$3,750,000 |
| Wasco County, OR | 18 | \$3,884,000 |
| Washington County, OR | 104 | \$9,081,000 |
| Adams County, WA | 19 | \$30,510,000 |
| Benton County, WA | 58 | \$15,480,000 |
| Clallam County, WA | 31 | \$7,620,320 |
| Columbia County, WA | 4 | \$19,500,000 |
| Cowlitz County, WA | 60 | \$669,550 |
| Ferry County, WA | 14 | \$16,005,000 |
| Grant County, WA | 57 | \$15,520,000 |
| Mason County, WA | 27 | \$12,330,000 |
| Okanogan County, WA | 37 | \$33,838,866 |
| Pend Oreille County, WA | 18 | \$19,310,000 |
| Skagit County, WA | 45 | \$9,994,000 |
| Spokane County, WA | 199 | \$15,328,238 |
| Whatcom County, WA | 38 | \$5,940,000 |
| Whitman County, WA | 20 | \$15,757,500 |
| Yakima County, WA | 200 | \$18,600,000 |
Cluster 3
# Cluster 3 Scatterplot
# y is our independent variable (NMTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 3) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_nmtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())

svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 3) %>%
select(flag_count10,post10_nmtc_project_dollars) %>%
cor(method = "pearson")
## flag_count10 post10_nmtc_project_dollars
## flag_count10 1.0000000 0.2320538
## post10_nmtc_project_dollars 0.2320538 1.0000000
Cluster 3 shows a weak, positive association.
svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 3) %>%
select(county_name, flag_count10, post10_nmtc_dollars_formatted) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| county_name | flag_count10 | post10_nmtc_dollars_formatted |
|---|---|---|
| San Francisco County, CA | 316 | \$68,150,600 |
| San Luis Obispo County, CA | 56 | \$47,941,400 |
| San Mateo County, CA | 161 | \$47,864,844 |
| Shasta County, CA | 135 | \$48,005,000 |
| Hawaii County, HI | 56 | \$99,555,000 |
| Douglas County, OR | 45 | \$66,520,000 |
| Multnomah County, OR | 262 | \$52,382,352 |
| Clark County, WA | 133 | \$64,280,000 |
| Grays Harbor County, WA | 47 | \$83,180,621 |
| King County, WA | 358 | \$111,041,500 |
| Pierce County, WA | 290 | \$76,005,801 |
| Snohomish County, WA | 146 | \$47,437,840 |
Cluster 4
# Cluster 4 Scatterplot
# y is our independent variable (NMTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 4) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_nmtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())

svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 4) %>%
select(flag_count10,post10_nmtc_project_dollars) %>%
cor(method = "pearson")
## flag_count10 post10_nmtc_project_dollars
## flag_count10 NA NA
## post10_nmtc_project_dollars NA NA
Cluster 4 contains only our outlier.
svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 4) %>%
select(county_name, flag_count10, post10_nmtc_dollars_formatted) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| county_name | flag_count10 | post10_nmtc_dollars_formatted |
|---|---|---|
| Los Angeles County, CA | 9210 | \$987,407,086 |
Cluster 5
# Cluster 5 Scatterplot
# y is our independent variable (NMTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 5) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_nmtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())

svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 5) %>%
select(flag_count10,post10_nmtc_project_dollars) %>%
cor(method = "pearson")
## flag_count10 post10_nmtc_project_dollars
## flag_count10 1.0000000 0.9664253
## post10_nmtc_project_dollars 0.9664253 1.0000000
Cluster 5 has a very strong, positive association. These counties are technically outliers as well, but not to the same degree as LAC.
svi_divisional_county_nmtc_projects2 %>%
filter(cluster == 5) %>%
select(county_name, flag_count10, post10_nmtc_dollars_formatted) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| county_name | flag_count10 | post10_nmtc_dollars_formatted |
|---|---|---|
| Alameda County, CA | 815 | \$119,049,224 |
| Fresno County, CA | 931 | \$115,258,480 |
| San Diego County, CA | 1305 | \$221,738,411 |
Bivariate Map
divisional_county_sf <- svi_county_map2010 %>% select(COUNTYFP, STATEFP, geometry)
divisional_county_sf %>% head(5)
## Simple feature collection with 5 features and 2 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -2327771 ymin: -195140.7 xmax: -1953556 ymax: 782440.1
## Projected CRS: USA_Contiguous_Albers_Equal_Area_Conic
## COUNTYFP STATEFP geometry
## 1 035 06 MULTIPOLYGON (((-1987497 61...
## 2 049 06 MULTIPOLYGON (((-1992512 76...
## 3 075 06 MULTIPOLYGON (((-2327608 35...
## 4 083 06 MULTIPOLYGON (((-2157081 -1...
## 5 091 06 MULTIPOLYGON (((-2025220 47...
# Join our NMTC projects data with our shapefile geocoordinates
svi_divisional_county_nmtc_sf <- left_join(svi_divisional_county_nmtc_projects, divisional_county_sf, join_by("FIPS_st" == "STATEFP", "FIPS_county" == "COUNTYFP"))
svi_divisional_county_nmtc_sf %>% head(5) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| State | County | Division | post10_nmtc_project_cnt | tract_cnt | post10_nmtc_project_dollars | post10_nmtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name | geometry |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AK | Aleutians East Borough | Pacific Division | 1 | 1 | 15762500 | \$15,762,500 | 02013 | 02 | 013 | Alaska | 4 | West Region | 9 | 9 | 3703 | 0.0024305 | 0.2 | 1.0 | 6 | 3389 | 0.0017704 | 0.2 | 1.0 | Aleutians East Borough, AK | MULTIPOLYGON (((-2385249 -1… |
| AK | Anchorage Municipality | Pacific Division | 1 | 13 | 9800000 | \$9,800,000 | 02020 | 02 | 020 | Alaska | 4 | West Region | 9 | 56 | 64432 | 0.0008691 | 0.8 | 0.2 | 73 | 69679 | 0.0010477 | 0.8 | 0.4 | Anchorage Municipality, AK | MULTIPOLYGON (((-1927463 -1… |
| AK | Wade Hampton Census Area | Pacific Division | 1 | 1 | 21420000 | \$21,420,000 | 02270 | 02 | 270 | Alaska | 4 | West Region | 9 | 10 | 7398 | 0.0013517 | 0.4 | 0.8 | 11 | 8298 | 0.0013256 | 0.4 | 0.6 | Wade Hampton Census Area, AK | MULTIPOLYGON (((-2310112 -1… |
| AK | Yukon-Koyukuk Census Area | Pacific Division | 1 | 3 | 7644000 | \$7,644,000 | 02290 | 02 | 290 | Alaska | 4 | West Region | 9 | 26 | 4027 | 0.0064564 | 0.6 | 1.0 | 28 | 3979 | 0.0070369 | 0.6 | 1.0 | Yukon-Koyukuk Census Area, AK | MULTIPOLYGON (((-1736112 -9… |
| CA | Alameda County | Pacific Division | 10 | 134 | 119049224 | \$119,049,224 | 06001 | 06 | 001 | California | 4 | West Region | 9 | 815 | 563385 | 0.0014466 | 1.0 | 0.8 | 690 | 615018 | 0.0011219 | 1.0 | 0.6 | Alameda County, CA | MULTIPOLYGON (((-2266160 34… |
# Create classes for bivariate mapping
svi_divisional_county_nmtc_sf <- bi_class(svi_divisional_county_nmtc_sf, x = flag_count10, y = post10_nmtc_project_dollars, style = "quantile", dim = 3)
# View data
svi_divisional_county_nmtc_sf %>% head(5) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| State | County | Division | post10_nmtc_project_cnt | tract_cnt | post10_nmtc_project_dollars | post10_nmtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name | geometry | bi_class |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AK | Aleutians East Borough | Pacific Division | 1 | 1 | 15762500 | \$15,762,500 | 02013 | 02 | 013 | Alaska | 4 | West Region | 9 | 9 | 3703 | 0.0024305 | 0.2 | 1.0 | 6 | 3389 | 0.0017704 | 0.2 | 1.0 | Aleutians East Borough, AK | MULTIPOLYGON (((-2385249 -1… | 1-2 |
| AK | Anchorage Municipality | Pacific Division | 1 | 13 | 9800000 | \$9,800,000 | 02020 | 02 | 020 | Alaska | 4 | West Region | 9 | 56 | 64432 | 0.0008691 | 0.8 | 0.2 | 73 | 69679 | 0.0010477 | 0.8 | 0.4 | Anchorage Municipality, AK | MULTIPOLYGON (((-1927463 -1… | 2-1 |
| AK | Wade Hampton Census Area | Pacific Division | 1 | 1 | 21420000 | \$21,420,000 | 02270 | 02 | 270 | Alaska | 4 | West Region | 9 | 10 | 7398 | 0.0013517 | 0.4 | 0.8 | 11 | 8298 | 0.0013256 | 0.4 | 0.6 | Wade Hampton Census Area, AK | MULTIPOLYGON (((-2310112 -1… | 1-2 |
| AK | Yukon-Koyukuk Census Area | Pacific Division | 1 | 3 | 7644000 | \$7,644,000 | 02290 | 02 | 290 | Alaska | 4 | West Region | 9 | 26 | 4027 | 0.0064564 | 0.6 | 1.0 | 28 | 3979 | 0.0070369 | 0.6 | 1.0 | Yukon-Koyukuk Census Area, AK | MULTIPOLYGON (((-1736112 -9… | 1-1 |
| CA | Alameda County | Pacific Division | 10 | 134 | 119049224 | \$119,049,224 | 06001 | 06 | 001 | California | 4 | West Region | 9 | 815 | 563385 | 0.0014466 | 1.0 | 0.8 | 690 | 615018 | 0.0011219 | 1.0 | 0.6 | Alameda County, CA | MULTIPOLYGON (((-2266160 34… | 3-3 |
# Create map with ggplot
svi_divisional_county_nmtc_map <- ggplot() +
# Map county shapefile, fill with bi_class categories
geom_sf(data = svi_divisional_county_nmtc_sf, mapping = aes(geometry=geometry, fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
# Set to biscale palette
bi_scale_fill(pal = "GrPink", dim = 3) +
# Add state shapefiles for outline
geom_sf(data=divisional_st_sf, color="black", fill=NA, linewidth=.5, aes(geometry=geometry)) +
labs(
title = paste0("Correlation of 2010 ", census_division, " SVI Flag Count \n and 2011 - 2020 NMTC Tax Dollars"),
) +
# Set them to biscale
bi_theme(base_size = 10)
# Create biscale legend
svi_divisional_county_nmtc_legend <- bi_legend(pal = "GrPink",
dim = 3,
xlab = "SVI Flag Count",
ylab = "NMTC Dollars",
size = 8)
# Combine map with legend using cowplot
svi_divisional_county_nmtc_bivarmap <- ggdraw() +
draw_plot(svi_divisional_county_nmtc_map) +
# Set legend location
draw_plot(svi_divisional_county_nmtc_legend, x= -.02, y = -.05,
width=.20)
# View map
svi_divisional_county_nmtc_bivarmap

Areas with high NMTC dollars and high SVI flags tend to be located in more densely populated parts of the Pacific Division, including California and the Seattle-metro area. The inland northwest appears to be more likely to have fewer flags, so we see more counties in shades of gray to blue.
LIHTC in Pacific Division
svi_divisional_county_lihtc_projects <- svi_divisional_county_lihtc %>% filter(post10_lihtc_project_cnt > 0)
svi_divisional_county_lihtc_projects <- svi_divisional_county_lihtc_projects %>% filter(post10_lihtc_project_dollars > 0)
Data Summary
summary(svi_divisional_county_lihtc_projects$flag_count10)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.00 14.75 25.50 171.14 149.75 2394.00
summary(svi_divisional_county_lihtc_projects$post10_lihtc_project_dollars)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 250101 745546 2168330 5287061 4488865 50547731
There’s a wide range of flags among the Pacific Division counties, but not as wide as it is for the NMTC data. Some counties have as few as 2 flags or as many as 2,394 flags (Los Angeles County). The next highest number of flags after the maximum is 376. This explains the large difference between the median (26 flags) and mean (171 flags); like for the NMTC data, the median is a more realistic average for the division because the mean is dragged significantly higher by the maximum.
Similarly, LIHTC project award totals in Pacific Division counties
ranged from $250,101 to $50,547,731. Los Angeles County accounts for
the maximum cost here as well. The next highest county total comes in
at
$20,961,962, which is a much smaller gap than for the NMTC project
award totals.
Los Angeles County is an outlier that skews the data to the right, creating a significant difference between the median and mean for both variables. Let’s visualize this effect in a scatterplot.
# Scatterplot
# y is our independent variable (LIHTC Project Dollars),
# x is our dependent variable (SVI flag count)
ggplot2::ggplot(svi_divisional_county_lihtc_projects,
aes(x=flag_count10,
y=post10_lihtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())

The scatterplot for LIHTC is similar to but less severely skewed than the NMTC data.
# Pearson's r calculation
cor(svi_divisional_county_lihtc_projects$flag_count10, svi_divisional_county_lihtc_projects$post10_lihtc_project_dollars, method = "pearson")
## [1] 0.9418682
There is a very strong and positive correlation between flag count and LIHTC project award totals in the Pacific Division.
svi_d_c_temp2 <- svi_divisional_county_lihtc_projects %>%
filter(County != "Los Angeles County")
cor(svi_d_c_temp2$flag_count10, svi_d_c_temp2$post10_lihtc_project_dollars, method = "pearson")
## [1] 0.7026956
If we exclude LAC, the correlation drops. The test excluding LAC returns a strong, positive correlation. This means LAC has a less severe effect on the LIHTC than it did on the NMTC data.
In the Pacific Division, counties with more social vulnerability flags in 2010 received more LIHTC dollars in 2011-2020. The boxplot below further visualizes the skewed distribution and identifies other outliers. However, the data does not adjust the number of flags by population, so the list of outliers below also represents the most populous counties in the Pacific Division.
The study by Basolo et. al also brings up an issue that is important to keep in mind for the LIHTC data. We’re looking at the correlation between award totals and SVI flags because we want to understand how investment changed social vulnerability over time; however, LIHTC is most effectively used when built in areas of low social vulnerability. To see that there’s a strong correlation between dollars and flags is not ideal. This is because such placements segregate low-income households from opportunity and access to key destinations. While it achieves the goal of improving the affordable housing stock, it could harm our regression model through economic segregation. LAC is the perfect example of this.
boxplot(svi_divisional_county_lihtc_projects$flag_count10)

boxplot.stats(svi_divisional_county_lihtc_projects$flag_count10)$out %>% sort(decreasing = TRUE)
## [1] 2394 376
svi_divisional_county_lihtc_projects %>% filter(flag_count10 == 2394) %>% select(county_name, flag_count10, post10_lihtc_dollars_formatted) %>% head()
## county_name flag_count10 post10_lihtc_dollars_formatted
## 1 Los Angeles County, CA 2394 $50,547,731
K-Means Clustering
svi_divisional_lihtc_cluster <- svi_divisional_county_lihtc_projects %>%
select(county_name, post10_lihtc_project_dollars,
flag_count10) %>%
remove_rownames %>%
column_to_rownames(var="county_name")
# Remove nulls, if in dataset
svi_divisional_lihtc_cluster <- na.omit(svi_divisional_lihtc_cluster)
# Scale numeric variables
svi_divisional_lihtc_cluster <- scale(svi_divisional_lihtc_cluster)
svi_divisional_lihtc_cluster %>% head(5)
## post10_lihtc_project_dollars flag_count10
## Alameda County, CA -0.3720126 0.03317421
## Butte County, CA -0.4766870 -0.34418241
## Fresno County, CA -0.2922395 -0.17225070
## Humboldt County, CA -0.4092212 -0.35534681
## Kern County, CA -0.2010567 -0.11866159
set.seed(123)
k2_lihtc_div <- kmeans(svi_divisional_lihtc_cluster, centers = 2, nstart = 25)
set.seed(123)
k3_lihtc_div <- kmeans(svi_divisional_lihtc_cluster, centers = 3, nstart = 25)
set.seed(123)
k4_lihtc_div <- kmeans(svi_divisional_lihtc_cluster, centers = 4, nstart = 25)
set.seed(123)
k5_lihtc_div <- kmeans(svi_divisional_lihtc_cluster, centers = 5, nstart = 25)
# plots to compare
p_k2_lihtc_div <- factoextra::fviz_cluster(k2_lihtc_div, geom = "point", data = svi_divisional_lihtc_cluster) + ggtitle("k = 2")
p_k3_lihtc_div <- factoextra::fviz_cluster(k3_lihtc_div, geom = "point", data = svi_divisional_lihtc_cluster) + ggtitle("k = 3")
p_k4_lihtc_div <- factoextra::fviz_cluster(k4_lihtc_div, geom = "point", data = svi_divisional_lihtc_cluster) + ggtitle("k = 4")
p_k5_lihtc_div <- factoextra::fviz_cluster(k5_lihtc_div, geom = "point", data = svi_divisional_lihtc_cluster) + ggtitle("k = 5")
grid.arrange(p_k2_lihtc_div, p_k3_lihtc_div, p_k4_lihtc_div, p_k5_lihtc_div, nrow = 2)

elbow_plot(svi_divisional_lihtc_cluster)
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10
## [1] 11
## [1] 12
## [1] 13
## [1] 14
## [1] 15

Like the NMTC clustering, LAC degrades the visibility of the centroids in the bottom left and impacts the usability of the elbow plot. If we accept this elbow plot, it would mean LAC is by itself and the rest of the 27 counties in the Pacific Division are in a group.
In every iteration of k = n, LAC comprises its own cluster, a good sign like with the NMTC data. What’s unique about the LIHTC data is that, at k = 4 and k = 5, the model clusters the other outlier independently as well. Let’s remove LAC, then add 1 to that elbow plot’s number to add LAC back in. As stated before, this is not valid according to the original elbow plot, but technically, the model is already overfitted because k-means is not the ideal clustering method for the Pacific Division when including LAC. We’ll leave the other outlier in the data because it belongs to a group in k = 2 and k = 3.
svi_divisional_lihtc_cluster2 <- svi_divisional_county_lihtc_projects %>%
filter(county_name != "Los Angeles County, CA") %>%
select(county_name, post10_lihtc_project_dollars,
flag_count10) %>%
remove_rownames %>%
column_to_rownames(var="county_name")
# Remove nulls, if in dataset
svi_divisional_lihtc_cluster2 <- na.omit(svi_divisional_lihtc_cluster2)
# Scale numeric variables
svi_divisional_lihtc_cluster2 <- scale(svi_divisional_lihtc_cluster2)
svi_divisional_lihtc_cluster2 %>% head(5)
## post10_lihtc_project_dollars flag_count10
## Alameda County, CA -0.44285872 0.91809920
## Butte County, CA -0.67088766 -0.67842772
## Fresno County, CA -0.26907622 0.04898395
## Humboldt County, CA -0.52391625 -0.72566225
## Kern County, CA -0.07043801 0.27570967
set.seed(123)
k2_lihtc_div2 <- kmeans(svi_divisional_lihtc_cluster2, centers = 2, nstart = 25)
set.seed(123)
k3_lihtc_div2 <- kmeans(svi_divisional_lihtc_cluster2, centers = 3, nstart = 25)
set.seed(123)
k4_lihtc_div2 <- kmeans(svi_divisional_lihtc_cluster2, centers = 4, nstart = 25)
set.seed(123)
k5_lihtc_div2 <- kmeans(svi_divisional_lihtc_cluster2, centers = 5, nstart = 25)
# plots to compare
p_k2_lihtc_div2 <- factoextra::fviz_cluster(k2_lihtc_div2, geom = "point", data = svi_divisional_lihtc_cluster2) + ggtitle("k = 2")
p_k3_lihtc_div2 <- factoextra::fviz_cluster(k3_lihtc_div2, geom = "point", data = svi_divisional_lihtc_cluster2) + ggtitle("k = 3")
p_k4_lihtc_div2 <- factoextra::fviz_cluster(k4_lihtc_div2, geom = "point", data = svi_divisional_lihtc_cluster2) + ggtitle("k = 4")
p_k5_lihtc_div2 <- factoextra::fviz_cluster(k5_lihtc_div2, geom = "point", data = svi_divisional_lihtc_cluster2) + ggtitle("k = 5")
grid.arrange(p_k2_lihtc_div2, p_k3_lihtc_div2, p_k4_lihtc_div2, p_k5_lihtc_div2, nrow = 2)

elbow_plot(svi_divisional_lihtc_cluster2)
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10
## [1] 11
## [1] 12
## [1] 13
## [1] 14
## [1] 15

Spacing decreases after 2 clusters, so we’ll add 1 cluster to account
for LAC in its own group. We can see that k = 2 in
svi_divisional_lihtc_cluster2 is very similar to k = 3 in
svi_divisional_lihtc_cluster. So k3_lihtc_div will serve as the best
cluster matrix.
grid.arrange(p_k2_lihtc_div2, p_k3_lihtc_div, nrow = 1)

p_k3_lihtc_div

svi_divisional_lihtc_cluster_label <- as.data.frame(svi_divisional_lihtc_cluster) %>%
rownames_to_column(var = "county_name") %>%
as_tibble() %>%
mutate(cluster = k3_lihtc_div$cluster) %>%
select(county_name, cluster)
svi_divisional_county_lihtc_projects2 <- left_join(svi_divisional_county_lihtc_projects, svi_divisional_lihtc_cluster_label, join_by(county_name == county_name))
# View county counts in each cluster
table(svi_divisional_county_lihtc_projects2$cluster)
##
## 1 2 3
## 1 21 6
Cluster 1
# Cluster 1 Scatterplot
# y is our independent variable (LIHTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_divisional_county_lihtc_projects2 %>%
filter(cluster == 1) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_lihtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())

svi_divisional_county_lihtc_projects2 %>%
filter(cluster == 1) %>%
select(flag_count10,post10_lihtc_project_dollars) %>%
cor(method = "pearson")
## flag_count10 post10_lihtc_project_dollars
## flag_count10 NA NA
## post10_lihtc_project_dollars NA NA
Cluster 1 is made up only of LAC, so there’s no correlation to report.
Cluster 2
# Cluster 2 Scatterplot
# y is our independent variable (LIHTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_divisional_county_lihtc_projects2 %>%
filter(cluster == 2) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_lihtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())

svi_divisional_county_lihtc_projects2 %>%
filter(cluster == 2) %>%
select(flag_count10,post10_lihtc_project_dollars) %>%
cor(method = "pearson")
## flag_count10 post10_lihtc_project_dollars
## flag_count10 1.0000000 0.3664188
## post10_lihtc_project_dollars 0.3664188 1.0000000
Cluster 2 has a weak, positive association.
Cluster 3
# Cluster 3 Scatterplot
# y is our independent variable (LIHTC Project Dollars),
# x is our dependent variable (SVI flag count)
svi_divisional_county_lihtc_projects2 %>%
filter(cluster == 3) %>%
ggplot2::ggplot(aes(x=flag_count10,
y=post10_lihtc_project_dollars)) +
geom_point() +
geom_smooth(method="lm") +
scale_y_continuous(labels = scales::dollar_format())

svi_divisional_county_lihtc_projects2 %>%
filter(cluster == 3) %>%
select(flag_count10,post10_lihtc_project_dollars) %>%
cor(method = "pearson")
## flag_count10 post10_lihtc_project_dollars
## flag_count10 1.0000000 0.4555345
## post10_lihtc_project_dollars 0.4555345 1.0000000
Cluster 3 has a moderate, positive association.
Bivariate Map
# Join our LIHTC projects data with our shapefile geocoordinates
svi_divisional_county_lihtc_sf <- left_join(svi_divisional_county_lihtc_projects, divisional_county_sf, join_by("FIPS_st" == "STATEFP", "FIPS_county" == "COUNTYFP"))
svi_divisional_county_lihtc_sf %>% head(5) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| State | County | Division | post10_lihtc_project_cnt | tract_cnt | post10_lihtc_project_dollars | post10_lihtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name | geometry |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CA | Alameda County | Pacific Division | 1 | 23 | 1590984 | \$1,590,984 | 06001 | 06 | 001 | California | 4 | West Region | 9 | 186 | 92323 | 0.0020147 | 1.0 | 0.6 | 170 | 101788 | 0.0016701 | 1.0 | 0.6 | Alameda County, CA | MULTIPOLYGON (((-2266160 34… |
| CA | Butte County | Pacific Division | 1 | 3 | 551007 | \$551,007 | 06007 | 06 | 007 | California | 4 | West Region | 9 | 17 | 12025 | 0.0014137 | 0.6 | 0.2 | 19 | 13034 | 0.0014577 | 0.6 | 0.4 | Butte County, CA | MULTIPOLYGON (((-2174433 56… |
| CA | Fresno County | Pacific Division | 4 | 8 | 2383558 | \$2,383,558 | 06019 | 06 | 019 | California | 4 | West Region | 9 | 94 | 36454 | 0.0025786 | 1.0 | 0.8 | 92 | 34872 | 0.0026382 | 1.0 | 1.0 | Fresno County, CA | MULTIPOLYGON (((-2051818 14… |
| CA | Humboldt County | Pacific Division | 1 | 2 | 1221303 | \$1,221,303 | 06023 | 06 | 023 | California | 4 | West Region | 9 | 12 | 8644 | 0.0013882 | 0.4 | 0.2 | 15 | 8698 | 0.0017245 | 0.6 | 0.6 | Humboldt County, CA | MULTIPOLYGON (((-2312278 74… |
| CA | Kern County | Pacific Division | 8 | 11 | 3289492 | \$3,289,492 | 06029 | 06 | 029 | California | 4 | West Region | 9 | 118 | 54631 | 0.0021599 | 1.0 | 0.6 | 116 | 54102 | 0.0021441 | 1.0 | 0.8 | Kern County, CA | MULTIPOLYGON (((-2050419 59… |
# Create classes for bivariate mapping
svi_divisional_county_lihtc_sf <- bi_class(svi_divisional_county_lihtc_sf, x = flag_count10, y = post10_lihtc_project_dollars, style = "quantile", dim = 3)
# View data
svi_divisional_county_lihtc_sf %>% head(5) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
| State | County | Division | post10_lihtc_project_cnt | tract_cnt | post10_lihtc_project_dollars | post10_lihtc_dollars_formatted | fips_county_st | FIPS_st | FIPS_county | state_name | region_number | region | division_number | flag_count10 | pop10 | flag_by_pop10 | flag_count_quantile10 | flag_pop_quantile10 | flag_count20 | pop20 | flag_by_pop20 | flag_count_quantile20 | flag_pop_quantile20 | county_name | geometry | bi_class |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CA | Alameda County | Pacific Division | 1 | 23 | 1590984 | \$1,590,984 | 06001 | 06 | 001 | California | 4 | West Region | 9 | 186 | 92323 | 0.0020147 | 1.0 | 0.6 | 170 | 101788 | 0.0016701 | 1.0 | 0.6 | Alameda County, CA | MULTIPOLYGON (((-2266160 34… | 3-2 |
| CA | Butte County | Pacific Division | 1 | 3 | 551007 | \$551,007 | 06007 | 06 | 007 | California | 4 | West Region | 9 | 17 | 12025 | 0.0014137 | 0.6 | 0.2 | 19 | 13034 | 0.0014577 | 0.6 | 0.4 | Butte County, CA | MULTIPOLYGON (((-2174433 56… | 2-1 |
| CA | Fresno County | Pacific Division | 4 | 8 | 2383558 | \$2,383,558 | 06019 | 06 | 019 | California | 4 | West Region | 9 | 94 | 36454 | 0.0025786 | 1.0 | 0.8 | 92 | 34872 | 0.0026382 | 1.0 | 1.0 | Fresno County, CA | MULTIPOLYGON (((-2051818 14… | 2-2 |
| CA | Humboldt County | Pacific Division | 1 | 2 | 1221303 | \$1,221,303 | 06023 | 06 | 023 | California | 4 | West Region | 9 | 12 | 8644 | 0.0013882 | 0.4 | 0.2 | 15 | 8698 | 0.0017245 | 0.6 | 0.6 | Humboldt County, CA | MULTIPOLYGON (((-2312278 74… | 1-1 |
| CA | Kern County | Pacific Division | 8 | 11 | 3289492 | \$3,289,492 | 06029 | 06 | 029 | California | 4 | West Region | 9 | 118 | 54631 | 0.0021599 | 1.0 | 0.6 | 116 | 54102 | 0.0021441 | 1.0 | 0.8 | Kern County, CA | MULTIPOLYGON (((-2050419 59… | 2-2 |
# Create map with ggplot
svi_divisional_county_lihtc_map <- ggplot() +
# Map county shapefile, fill with bi_class categories
geom_sf(data = svi_divisional_county_lihtc_sf, mapping = aes(geometry=geometry, fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
# Set to biscale palette
bi_scale_fill(pal = "GrPink", dim = 3) +
# Add state shapefiles for outline
geom_sf(data=divisional_st_sf, color="black", fill=NA, linewidth=.5, aes(geometry=geometry)) +
labs(
title = paste0("Correlation of 2010 ", census_division, " SVI Flag Count \n and 2011 - 2020 LIHTC Tax Dollars")
) +
# Set them to biscale
bi_theme(base_size = 10)
# Create biscale legend
svi_divisional_county_lihtc_legend <- bi_legend(pal = "GrPink",
dim = 3,
xlab = "SVI Flag Count",
ylab = "LIHTC Dollars",
size = 8)
# Combine map with legend using cowplot
svi_divisional_county_lihtc_bivarmap <- ggdraw() +
draw_plot(svi_divisional_county_lihtc_map) +
# Set legend location
draw_plot(svi_divisional_county_lihtc_legend, x= -.02, y = -.05,
width=.20)
# View map
svi_divisional_county_lihtc_bivarmap

Oregon, Hawaii, and Alaska have few counties included in this dataset. California has the most counties represented in the LIHTC data for the Pacific Division. Interestingly, most counties with high LIHTC project award totals and high SVI flags are grouped in southern California.
saveRDS(svi_divisional_lihtc, file = here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_divisional_lihtc.rds")))
saveRDS(svi_national_lihtc, file = here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_national_lihtc.rds")))
saveRDS(svi_divisional_nmtc, file = here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_divisional_nmtc.rds")))
saveRDS(svi_national_nmtc, file = here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_national_nmtc.rds")))
</div>