Introduction

The differences-in-differences model (sometimes called diff-in-diff or DiD) is a regression model that studies the difference in trends over time between a treatment group and a control group. The DiD model’s most important assumption is that, without treatment, trends in the treatment group would be similar to trends in the control group. This is how the counterfactual and program effect are established and calculated. Figarri Kiesha’s DiD diagram (2022) visualizes this.

DiD diagram

So why use the DiD model? Studying how two tax programs affect social vulnerability is complicated by many factors. The DiD model controls for observed and unobserved time-invariant characteristics, or factors that consistently influence the data over time (Gertler et. al, 2016, p. 134). Additionally, we have data that we can study before and after the inventions of the NMTC and LIHTC programs. The data also contains information for counties that were eligible for the tax credit programs but received no project funding. These counties serve as a similar control group and will help to create the counterfactual.

Dependent Variables

This report uses several DiD models to understand the impact of the tax credit programs on social vulnerability, median income, median home value, and the house price index. These four variables will serve as the dependent (or outcome) variables. We use these variables because they overlap with the tax credit programs’ purpose to invest in affordable housing to benefit low-income households and community development to benefit disadvantaged neighborhoods. It’s reasonable to expect that these investments could improve SVI and median income. Because the NMTC targets neighborhoods, we expect to see home value increase.

dep_vars %>%
  kbl() %>%
  kable_styling(bootstrap_options = c("striped", "hover"))
Variable Description
Social Vulnerability Index (SVI) An index that measures 16 demographic and socioeconomic variables to understand a community’s risk to hazards
Median income The average income at which half of residents earn below and half of residents earn above
Median home value The average home price at which half of listings are listed below and half of listings are listed above
House Price Index (HPI) An index that measures "average price changes in repeat sales or refinancings on the same properties" (FHFA, 2025)

Independent Variables

The New Markets Tax Credit (NMTC) Program “incentivizes community development and economic growth through the use of tax credits that attract private investment to distressed communities” (U.S. Department of the Treasury, 2025). The data includes variables about project awards (in dollars), the number of projects, geography, and more. Because it includes geographic data, we can pair the NMTC data with other data, specifically from the American Community Survey.

The Low-Income Housing Tax Credit (LIHTC) Program allows authorized agencies to “issue tax credits for the acquisition, rehabilitation, or new construction of rental housing targeted to lower-income households” (U.S. Department of Housing and Urban Development, 2025). Like the NMTC, the LIHTC data includes variables about project awards (in dollars), the number of projects, and geography, which makes it useful for pairing with ACS data.

Library

# Load packages
library(here)         # relative filepaths for reproducibility
library(rio)          # read excel file from URL
library(tidyverse)    # data wrangling
library(stringi)      # string data wrangling
library(tidycensus)   # US census data
library(ggplot2)      # data visualization
library(scales)       # palette and number formatting
library(unhcrthemes)  # data visualization themes
library(ggrepel)      # data visualization formatting to avoid overlapping
library(rcompanion)   # data visualization of variable distribution
library(ggpubr)       # data visualization of variable distribution
library(moments)      # measures of skewness and kurtosis
library(tinytable)    # format regression tables
library(modelsummary) # format regression tables

Load Functions

import::here( "fips_census_regions",
              "load_svi_data",
              "merge_svi_data",
              "census_division",
              "slopegraph_plot",
              "census_pull",
             # notice the use of here::here() that points to the .R file
             # where all these R objects are created
             .from = here::here("analysis/project_data_steps_Jazzy.R"),
             .character_only = TRUE)
# Load API key, assign to TidyCensus Package
source(here::here("analysis/password.R"))
census_api_key(.census_api_key)
## To install your API key for use in future sessions, run this function with `install = TRUE`.

Data

# Load NMTC AND LIHTC data sets
svi_divisional_nmtc <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_divisional_nmtc.rds")))

svi_national_nmtc <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_national_nmtc.rds")))

svi_divisional_lihtc <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_divisional_lihtc.rds")))

svi_national_lihtc <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_national_lihtc.rds")))

House Price Index Data

hpi_df <- read.csv("https://r-class.github.io/paf-515-course-materials/data/raw/HPI/HPI_AT_BDL_tract.csv")

hpi_df_10_20 <- hpi_df %>% 
  mutate(GEOID10 = str_pad(tract, 11, "left", pad=0)) %>% 
  filter(year %in% c(2010, 2020))  %>%
 select(GEOID10, state_abbr, year, hpi) %>%
  pivot_wider(names_from = year, values_from = hpi) %>%
  mutate(housing_price_index10 = `2010`,
         housing_price_index20 = `2020`) %>%
  select(GEOID10, state_abbr, housing_price_index10, housing_price_index20)

# View data
hpi_df_10_20 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID10 state_abbr housing_price_index10 housing_price_index20
01001020100 AL 132.35 152.78
01001020200 AL 123.78 123.37
01001020300 AL 158.57 167.01
01001020400 AL 165.11 179.60
01001020501 AL 172.55 180.96
01001020502 AL 158.75 164.25
# Drop state_abbr column for joining
hpi_df_10_20 <- hpi_df_10_20 %>% select(-state_abbr)

CBSA Crosswalk Data

msa_csa_crosswalk <- rio::import("https://r-class.github.io/paf-515-course-materials/data/raw/CSA_MSA_Crosswalk/qcew-county-msa-csa-crosswalk.xlsx", which=4)

msa_csa_crosswalk <- msa_csa_crosswalk %>% 
  mutate(county_fips = str_pad(`County Code`, 5, "left", pad=0),
         cbsa = coalesce(`CSA Title`, `MSA Title`),
         cbsa_code = coalesce(`CSA Code`, `MSA Code`),
         county_title = `County Title`)  %>% 
  select(county_fips, county_title, cbsa, cbsa_code)

msa_csa_crosswalk %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
county_fips county_title cbsa cbsa_code
01001 Autauga County, Alabama Montgomery-Alexander City, AL CSA CS388
01003 Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01005 Barbour County, Alabama Eufaula, AL-GA MicroSA C2164
01007 Bibb County, Alabama Birmingham-Hoover-Cullman, AL CSA CS142
01009 Blount County, Alabama Birmingham-Hoover-Cullman, AL CSA CS142
01015 Calhoun County, Alabama Anniston-Oxford, AL MSA C1150

Census Data

states <- list(svi_national_nmtc$state %>% unique())
states 
## [[1]]
##  [1] "AL" "AK" "AZ" "AR" "CA" "CO" "CT" "DE" "DC" "FL" "GA" "HI" "ID" "IL" "IN"
## [16] "IA" "KS" "KY" "LA" "ME" "MD" "MA" "MI" "MN" "MS" "MO" "MT" "NE" "NV" "NH"
## [31] "NJ" "NM" "NY" "NC" "ND" "OH" "OK" "OR" "PA" "RI" "SC" "SD" "TN" "TX" "UT"
## [46] "VT" "VA" "WA" "WV" "WI" "WY"
census_pull10 <- lapply(states, census_pull, yr = 2010)

census_pull10_df <- census_pull10[[1]] %>%  
  # Drop margin of error column
  select(-moe) %>%
  # Add suffix to variable names
  mutate(variable = paste0(variable, "_10")) %>%
  # Pivot data frame
  pivot_wider(
    names_from = variable,
    values_from = c(estimate)
  )

census_pull10_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID NAME Median_Income_10 Median_Home_Value_10
01001020100 Census Tract 201, Autauga County, Alabama 31769 120700
01001020200 Census Tract 202, Autauga County, Alabama 19437 138500
01001020300 Census Tract 203, Autauga County, Alabama 24146 111300
01001020400 Census Tract 204, Autauga County, Alabama 27735 126300
01001020500 Census Tract 205, Autauga County, Alabama 35517 173000
01001020600 Census Tract 206, Autauga County, Alabama 24597 110700
01001020700 Census Tract 207, Autauga County, Alabama 22114 93800
01001020801 Census Tract 208.01, Autauga County, Alabama 30841 258000
01001020802 Census Tract 208.02, Autauga County, Alabama 29006 145100
01001020900 Census Tract 209, Autauga County, Alabama 24841 108000
census_pull19 <- lapply(states, census_pull, yr = 2019)

census_pull19_df <- census_pull19[[1]] %>% 
  # Select columns
  select(GEOID, NAME, variable, estimate, moe) %>% 
  # Create individual FIPS columns for state, county, and tract
  mutate(FIPS_st = substr(GEOID, 1, 2),
         FIPS_county = substr(GEOID, 3, 5),
         FIPS_tract = substr(GEOID, 6, 11)) %>%
# Los Angeles, CA Census Tract fixes
                      mutate(FIPS_tract2 = if_else((FIPS_county == "037" & FIPS_st == "06" & FIPS_tract == "137000"), "930401", FIPS_tract )) %>%
# Pima County, AZ Census Tract fixes
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "002704"), "002701", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "002906"), "002903", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "004118"), "410501", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "004121"), "410502", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "004125"), "410503", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "005200"), "470400", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "005300"), "470500", FIPS_tract2 )) %>%
# Madison County, NY Census Tract fixes
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030101"), "940101", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030102"), "940102", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030103"), "940103", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030200"), "940200", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030300"), "940300", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030401"), "940401", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030403"), "940403", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030600"), "940600", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030402"), "940700", FIPS_tract2 )) %>%
# Oneida County, NY Census Tract fixes
                      mutate(FIPS_tract2 = if_else((FIPS_county == "065" & FIPS_st == "36" & FIPS_tract == "024800"), "940000", FIPS_tract2 )) %>% 
                      mutate(FIPS_tract2 = if_else((FIPS_county == "065" & FIPS_st == "36" & FIPS_tract == "024700"), "940100", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "065" & FIPS_st == "36" & FIPS_tract == "024900"), "940200", FIPS_tract2 )) %>%  
                      # Move columns in data set
                      relocate(c(FIPS_st, FIPS_county, FIPS_tract, FIPS_tract2),.after = GEOID) %>%
                      # Create new GEOID column
                      mutate(GEOID = paste0(FIPS_st, FIPS_county, FIPS_tract2)) %>% 
                      # Drop newly created FIPS columns and margin of error
                      select(-FIPS_st, -FIPS_county, -FIPS_tract, -FIPS_tract2, -moe) %>% 
                      # Add suffix
                      mutate(variable = paste0(variable, "_19")) %>%
                      # Pivot data set
                      pivot_wider(
                        names_from = variable,
                        values_from = c(estimate)
                      ) 

census_pull19_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID NAME Median_Income_19 Median_Home_Value_19
01001020100 Census Tract 201, Autauga County, Alabama 25970 136100
01001020200 Census Tract 202, Autauga County, Alabama 20154 90500
01001020300 Census Tract 203, Autauga County, Alabama 27383 122600
01001020400 Census Tract 204, Autauga County, Alabama 34620 152700
01001020500 Census Tract 205, Autauga County, Alabama 41178 186900
01001020600 Census Tract 206, Autauga County, Alabama 21146 103600
01001020700 Census Tract 207, Autauga County, Alabama 20934 82400
01001020801 Census Tract 208.01, Autauga County, Alabama 31667 322900
01001020802 Census Tract 208.02, Autauga County, Alabama 33086 171500
01001020900 Census Tract 209, Autauga County, Alabama 32677 156900
inflation_adj = 1.16

# Join 2010 and 2019 Median Income and Home Value Data
census_pull_df <- left_join(census_pull10_df, census_pull19_df[c("GEOID", "Median_Income_19", "Median_Home_Value_19")], join_by("GEOID" == "GEOID"))

# Create new inflation adjusted columns for 2010 median income and median home value, find changes over time
census_pull_df <- census_pull_df %>% 
                   mutate(Median_Income_10adj = Median_Income_10*inflation_adj,
                          Median_Home_Value_10adj = Median_Home_Value_10*inflation_adj,
                          Median_Income_Change = Median_Income_19 - Median_Income_10adj,
                          Median_Income_Change_pct = (Median_Income_19 - Median_Income_10adj)/Median_Income_10adj,
                          Median_Home_Value_Change = Median_Home_Value_19 - Median_Home_Value_10adj,
                          Median_Home_Value_Change_pct = (Median_Home_Value_19 - Median_Home_Value_10adj)/Median_Home_Value_10adj)

# View data
census_pull_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID NAME Median_Income_10 Median_Home_Value_10 Median_Income_19 Median_Home_Value_19 Median_Income_10adj Median_Home_Value_10adj Median_Income_Change Median_Income_Change_pct Median_Home_Value_Change Median_Home_Value_Change_pct
01001020100 Census Tract 201, Autauga County, Alabama 31769 120700 25970 136100 36852.04 140012 -10882.04 -0.2952900 -3912 -0.0279405
01001020200 Census Tract 202, Autauga County, Alabama 19437 138500 20154 90500 22546.92 160660 -2392.92 -0.1061307 -70160 -0.4366986
01001020300 Census Tract 203, Autauga County, Alabama 24146 111300 27383 122600 28009.36 129108 -626.36 -0.0223625 -6508 -0.0504074
01001020400 Census Tract 204, Autauga County, Alabama 27735 126300 34620 152700 32172.60 146508 2447.40 0.0760709 6192 0.0422639
01001020500 Census Tract 205, Autauga County, Alabama 35517 173000 41178 186900 41199.72 200680 -21.72 -0.0005272 -13780 -0.0686665
01001020600 Census Tract 206, Autauga County, Alabama 24597 110700 21146 103600 28532.52 128412 -7386.52 -0.2588807 -24812 -0.1932218
01001020700 Census Tract 207, Autauga County, Alabama 22114 93800 20934 82400 25652.24 108808 -4718.24 -0.1839309 -26408 -0.2427027
01001020801 Census Tract 208.01, Autauga County, Alabama 30841 258000 31667 322900 35775.56 299280 -4108.56 -0.1148426 23620 0.0789227
01001020802 Census Tract 208.02, Autauga County, Alabama 29006 145100 33086 171500 33646.96 168316 -560.96 -0.0166719 3184 0.0189168
01001020900 Census Tract 209, Autauga County, Alabama 24841 108000 32677 156900 28815.56 125280 3861.44 0.1340054 31620 0.2523946

NMTC Data

svi_divisional_nmtc_df0 <- left_join(svi_divisional_nmtc, census_pull_df, join_by("GEOID_2010_trt" == "GEOID"))

svi_divisional_nmtc_df1 <- left_join(svi_divisional_nmtc_df0, hpi_df_10_20, join_by("GEOID_2010_trt" == "GEOID10")) %>%
                          unite("county_fips", FIPS_st, FIPS_county, sep = "") 

svi_divisional_nmtc_df <- left_join(svi_divisional_nmtc_df1, msa_csa_crosswalk, join_by("county_fips" == "county_fips"))

svi_divisional_nmtc_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt county_fips FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 nmtc_eligibility pre10_nmtc_project_cnt pre10_nmtc_dollars pre10_nmtc_dollars_formatted post10_nmtc_project_cnt post10_nmtc_dollars post10_nmtc_dollars_formatted nmtc_flag NAME Median_Income_10 Median_Home_Value_10 Median_Income_19 Median_Home_Value_19 Median_Income_10adj Median_Home_Value_10adj Median_Income_Change Median_Income_Change_pct Median_Home_Value_Change Median_Home_Value_Change_pct housing_price_index10 housing_price_index20 county_title cbsa cbsa_code
02013000100 02013 000100 AK Alaska Aleutians East Borough 4 West Region 9 Pacific Division 3703 474 267 1212 3695 32.80108 0.7570 1 111 3163 3.509327 0.08691 0 25 158 15.82278 0.01337 0 17 109 15.59633 0.02605 0 42 267 15.73034 0.004754 0 1082 3017 35.863441 0.85420 1 2060 3112 66.195373 0.99990 1 127 3.429652 0.042400 0 315 8.506616 0.03961 0 182 2849 6.388206 0.077750 0 50 165 30.30303 0.8835 1 1070 3617 29.5825270 0.93700 1 3492 3703 94.30192 0.9141 1 474 8 1.687764 0.29250 0 42 8.8607595 0.8128 1 7 267 2.6217228 0.4003 0 77 267 28.8389513 0.96850 1 2969 3703 80.1782339 0.9940 1 2.702764 0.5611 3 1.980260 0.23800 2 0.9141 0.9047 1 3.46810 0.8902 3 9.065224 0.6397 9 3389 1199 988 698 3379 20.65700 0.5925 0 86 2414 3.562552 0.2665 0 67 607 11.037891 0.01803 0 74 381 19.42257 0.04067 0 141 988 14.27126 0.006988 0 354 2646 13.378685 0.61070 0 1345 3384 39.745863 0.99970 1 381 11.2422544 0.31390 0 443 13.07170 0.0988 0 339 2941.000 11.526692 0.386000 0 135 593.000 22.765599 0.7920 1 334 3276 10.1953602 0.72620 0 2939 3389.000 86.72175 0.8110 1 1199 38 3.169308 0.3474 0 69 5.754796 0.7806 1 30 988 3.0364372 0.36010 0 220 988.000 22.267207 0.9527 1 1035 3389 30.5399823 0.9843 1 2.476388 0.4947 1 2.316900 0.37850 1 0.8110 0.8038 1 3.42510 0.8683 3 9.029388 0.6419 6 Yes 0 0 \$0 1 15762500 \$15,762,500 1 Census Tract 1, Aleutians East Borough, Alaska 21138 121600 29177 119900 24520.08 141056 4656.92 0.1899227 -21156 -0.1499830 NA NA NA NA NA
02016000100 02016 000100 AK Alaska Aleutians West Census Area 4 West Region 9 Pacific Division 1774 1056 166 328 1231 26.64500 0.6553 0 15 1370 1.094890 0.01369 0 25 95 26.31579 0.09653 0 16 71 22.53521 0.05099 0 41 166 24.69880 0.029080 0 207 1330 15.563910 0.58390 0 484 973 49.743063 0.99520 1 53 2.987599 0.031800 0 182 10.259301 0.05188 0 147 747 19.678715 0.864200 1 19 96 19.79167 0.6606 0 79 1718 4.5983702 0.46890 0 1154 1774 65.05073 0.6522 0 1056 22 2.083333 0.31610 0 0 0.0000000 0.2497 0 10 166 6.0240964 0.6154 0 84 166 50.6024096 0.99320 1 1324 1774 74.6335964 0.9935 1 2.277170 0.4443 1 2.077380 0.27780 1 0.6522 0.6454 0 3.16790 0.7874 2 8.174650 0.5311 4 950 694 199 218 719 30.31989 0.7848 1 15 560 2.678571 0.1560 0 11 117 9.401709 0.01305 0 14 82 17.07317 0.03088 0 25 199 12.56281 0.003541 0 48 681 7.048458 0.37250 0 238 721 33.009709 0.99890 1 116 12.2105263 0.37310 0 195 20.52632 0.4153 0 113 526.000 21.482890 0.893100 1 31 98.000 31.632653 0.9318 1 17 900 1.8888889 0.29830 0 713 950.000 75.05263 0.6900 0 694 17 2.449568 0.3163 0 0 0.000000 0.2466 0 7 199 3.5175879 0.39980 0 68 199.000 34.170854 0.9826 1 274 950 28.8421053 0.9832 1 2.315741 0.4476 2 2.911600 0.70420 2 0.6900 0.6839 0 2.92850 0.6794 2 8.845841 0.6188 6 Yes 0 0 \$0 0 0 \$0 0 Census Tract 1, Aleutians West Census Area, Alaska 26600 103800 33125 71500 30856.00 120408 2269.00 0.0735351 -48908 -0.4061856 NA NA NA NA NA
02020000300 02020 000300 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 6308 1834 1707 1137 5839 19.47251 0.4988 0 59 1024 5.761719 0.26830 0 11 11 100.00000 0.99780 1 609 1696 35.90802 0.17490 0 620 1707 36.32103 0.215100 0 85 2458 3.458096 0.12670 0 125 4961 2.519653 0.02643 0 0 0.000000 0.003301 0 2744 43.500317 0.99640 1 54 2007 2.690583 0.007821 0 301 1635 18.40979 0.6168 0 11 5308 0.2072344 0.06620 0 2167 6308 34.35320 0.3715 0 1834 24 1.308615 0.27080 0 0 0.0000000 0.2497 0 10 1707 0.5858231 0.1573 0 10 1707 0.5858231 0.07765 0 469 6308 7.4350032 0.9359 1 1.135330 0.1355 0 1.690522 0.13070 1 0.3715 0.3677 0 1.69135 0.1520 1 4.888702 0.1113 2 8256 1834 1731 1603 6583 24.35060 0.6772 0 95 1105 8.597285 0.8029 1 7 16 43.750000 0.91050 1 1127 1715 65.71429 0.88900 1 1134 1731 65.51127 0.985700 1 148 3181 4.652625 0.23830 0 80 5243 1.525844 0.08775 0 119 1.4413760 0.00975 0 3086 37.37888 0.9880 1 193 2171.088 8.889551 0.188800 0 136 1429.970 9.510687 0.3216 0 0 7040 0.0000000 0.02391 0 3808 8256.294 46.12239 0.4209 0 1834 127 6.924755 0.4701 0 0 0.000000 0.2466 0 13 1731 0.7510110 0.12710 0 179 1731.395 10.338487 0.7913 1 1673 8256 20.2640504 0.9768 1 2.791850 0.5891 2 1.532060 0.07776 1 0.4209 0.4172 0 2.61190 0.5330 2 7.356710 0.4139 5 Yes 0 0 \$0 0 0 \$0 0 Census Tract 3, Anchorage Municipality, Alaska 32404 NA 31620 NA 37588.64 NA -5968.64 -0.1587884 NA NA NA NA Anchorage Municipality, Alaska Anchorage, AK MSA C1126
02020000400 02020 000400 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 5991 1360 1246 628 4602 13.64624 0.3404 0 117 924 12.662338 0.81630 1 0 12 0.00000 0.00240 0 761 1234 61.66937 0.78730 1 761 1246 61.07544 0.929600 1 24 1995 1.203008 0.03078 0 55 4075 1.349693 0.01061 0 0 0.000000 0.003301 0 2117 35.336338 0.93430 1 86 1820 4.725275 0.029420 0 138 1246 11.07544 0.3314 0 14 5099 0.2745636 0.07606 0 1539 5991 25.68853 0.2688 0 1360 0 0.000000 0.09395 0 10 0.7352941 0.5653 0 38 1246 3.0497592 0.4365 0 21 1246 1.6853933 0.19700 0 1389 5991 23.1847772 0.9762 1 2.127690 0.4021 2 1.374481 0.05613 1 0.2688 0.2660 0 2.26895 0.3836 1 6.039921 0.2480 4 5090 1440 1377 657 4243 15.48433 0.4416 0 82 1435 5.714286 0.5455 0 0 0 NaN NA NA 912 1377 66.23094 0.89700 1 912 1377 66.23094 0.987300 1 28 1928 1.452282 0.05471 0 82 3349 2.448492 0.16300 0 12 0.2357564 0.00585 0 1446 28.40864 0.8460 1 68 1902.717 3.573837 0.008563 0 56 1032.000 5.426357 0.1342 0 9 4411 0.2040354 0.06983 0 2444 5089.955 48.01614 0.4425 0 1440 38 2.638889 0.3255 0 0 0.000000 0.2466 0 7 1377 0.5083515 0.09514 0 92 1377.000 6.681191 0.6436 0 820 5090 16.1100196 0.9730 1 2.192110 0.4140 1 1.064443 0.02264 1 0.4425 0.4386 0 2.28384 0.3878 1 5.982893 0.2198 3 Yes 0 0 \$0 0 0 \$0 0 Census Tract 4, Anchorage Municipality, Alaska 23868 NA 30710 NA 27686.88 NA 3023.12 0.1091896 NA NA NA NA Anchorage Municipality, Alaska Anchorage, AK MSA C1126
02020000500 02020 000500 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 1872 979 956 384 1872 20.51282 0.5238 0 30 957 3.134796 0.06633 0 56 149 37.58389 0.39630 0 321 807 39.77695 0.23920 0 377 956 39.43515 0.311800 0 190 1139 16.681299 0.60890 0 314 2109 14.888573 0.48950 0 221 11.805556 0.574800 0 434 23.183761 0.43040 0 307 1475 20.813559 0.894900 1 91 385 23.63636 0.7603 1 129 1793 7.1946458 0.58420 0 1048 1872 55.98291 0.5787 0 979 578 59.039837 0.95260 1 0 0.0000000 0.2497 0 22 956 2.3012552 0.3729 0 78 956 8.1589958 0.68640 0 0 1872 0.0000000 0.3743 0 2.000330 0.3676 0 3.244600 0.82880 2 0.5787 0.5727 0 2.63590 0.5502 1 8.459530 0.5669 3 2039 1074 985 624 2039 30.60324 0.7906 1 119 1125 10.577778 0.8901 1 42 138 30.434783 0.56020 0 361 847 42.62102 0.32940 0 403 985 40.91371 0.614800 0 61 1468 4.155313 0.20970 0 350 1966 17.802645 0.95510 1 200 9.8087298 0.22920 0 322 15.79205 0.1707 0 233 1644.283 14.170309 0.581400 0 143 338.000 42.307692 0.9859 1 48 1920 2.5000000 0.35480 0 1060 2039.045 51.98512 0.4840 0 1074 642 59.776536 0.9485 1 0 0.000000 0.2466 0 39 985 3.9593909 0.43720 0 230 985.000 23.350254 0.9573 1 0 2039 0.0000000 0.1370 0 3.460300 0.7607 3 2.322000 0.38140 1 0.4840 0.4797 0 2.72660 0.5866 2 8.992900 0.6375 6 Yes 0 0 \$0 0 0 \$0 0 Census Tract 5, Anchorage Municipality, Alaska 28705 325000 29432 378600 33297.80 377000 -3865.80 -0.1160978 1600 0.0042440 149.51 185.49 Anchorage Municipality, Alaska Anchorage, AK MSA C1126
02020000701 02020 000701 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 5432 2076 1969 1206 5418 22.25914 0.5643 0 264 2765 9.547920 0.62650 0 354 1051 33.68221 0.26640 0 362 918 39.43355 0.23330 0 716 1969 36.36364 0.216100 0 411 3280 12.530488 0.50270 0 1108 5795 19.119931 0.64920 0 354 6.516937 0.200300 0 1479 27.227540 0.65230 0 567 4056 13.979290 0.607400 0 415 1255 33.06773 0.9178 1 73 4960 1.4717742 0.22780 0 3080 5432 56.70103 0.5848 0 2076 273 13.150289 0.63880 0 335 16.1368015 0.8980 1 166 1969 8.4306755 0.7014 0 202 1969 10.2590147 0.76450 1 0 5432 0.0000000 0.3743 0 2.558800 0.5224 0 2.605600 0.53860 1 0.5848 0.5788 0 3.37700 0.8627 2 9.126200 0.6476 3 6784 2585 2265 1300 6719 19.34812 0.5567 0 196 3597 5.448985 0.5123 0 356 1275 27.921569 0.45790 0 443 990 44.74747 0.37870 0 799 2265 35.27594 0.419800 0 363 3964 9.157417 0.46990 0 651 6607 9.853186 0.76060 1 437 6.4416274 0.06927 0 2252 33.19575 0.9548 1 945 4355.000 21.699196 0.897900 1 179 1612.000 11.104218 0.3936 0 481 6172 7.7932599 0.65010 0 4356 6784.000 64.20991 0.5963 0 2585 356 13.771760 0.6278 0 424 16.402321 0.9130 1 195 2265 8.6092715 0.68030 0 250 2265.000 11.037528 0.8145 1 7 6784 0.1031840 0.3090 0 2.719300 0.5684 1 2.965670 0.73150 2 0.5963 0.5911 0 3.34460 0.8443 2 9.625870 0.7156 5 Yes 0 0 \$0 0 0 \$0 0 Census Tract 7.01, Anchorage Municipality, Alaska 30261 212800 35306 230800 35102.76 246848 203.24 0.0057899 -16048 -0.0650117 196.20 222.97 Anchorage Municipality, Alaska Anchorage, AK MSA C1126
02020000702 02020 000702 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 5312 1972 1853 1154 5242 22.01450 0.5594 0 121 2647 4.571213 0.16150 0 229 784 29.20918 0.15100 0 418 1069 39.10196 0.22630 0 647 1853 34.91635 0.176500 0 172 2799 6.145052 0.25580 0 941 5126 18.357394 0.62460 0 202 3.802711 0.053090 0 1602 30.158133 0.78390 1 390 3602 10.827318 0.374000 0 279 1344 20.75893 0.6878 0 84 4700 1.7872340 0.26170 0 2129 5312 40.07907 0.4352 0 1972 250 12.677485 0.62970 0 48 2.4340771 0.6783 0 142 1853 7.6632488 0.6768 0 80 1853 4.3173233 0.45840 0 29 5312 0.5459337 0.7587 1 1.777800 0.3048 0 2.160490 0.31610 1 0.4352 0.4308 0 3.20190 0.8004 1 7.575390 0.4514 2 6391 2512 2317 1253 6298 19.89520 0.5724 0 101 2893 3.491186 0.2572 0 404 1230 32.845529 0.65310 0 524 1087 48.20607 0.46800 0 928 2317 40.05179 0.586300 0 431 3563 12.096548 0.57540 0 433 6087 7.113521 0.60170 0 634 9.9202003 0.23630 0 1892 29.60413 0.8823 1 1004 4195.000 23.933254 0.936100 1 351 1366.000 25.695461 0.8500 1 129 5974 2.1593572 0.32410 0 3992 6391.000 62.46284 0.5804 0 2512 548 21.815287 0.7513 1 200 7.961783 0.8180 1 220 2317 9.4950367 0.71030 0 120 2317.000 5.179111 0.5520 0 48 6391 0.7510562 0.6479 0 2.593000 0.5336 0 3.228800 0.84110 3 0.5804 0.5753 0 3.47950 0.8832 2 9.881700 0.7464 5 Yes 0 0 \$0 0 0 \$0 0 Census Tract 7.02, Anchorage Municipality, Alaska 30132 265800 27486 280300 34953.12 308328 -7467.12 -0.2136324 -28028 -0.0909032 192.20 212.03 Anchorage Municipality, Alaska Anchorage, AK MSA C1126
02020000703 02020 000703 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 5309 2312 2051 1208 5217 23.15507 0.5826 0 440 2750 16.000000 0.91910 1 269 929 28.95587 0.14470 0 613 1122 54.63458 0.61220 0 882 2051 43.00341 0.440600 0 480 3244 14.796548 0.56470 0 1399 5075 27.566502 0.85540 1 526 9.907704 0.446600 0 1355 25.522697 0.56000 0 1039 3732 27.840300 0.976800 1 304 1256 24.20382 0.7732 1 292 4943 5.9073437 0.53390 0 3146 5309 59.25786 0.6070 0 2312 514 22.231834 0.77020 1 235 10.1643599 0.8305 1 151 2051 7.3622623 0.6657 0 156 2051 7.6060458 0.66140 0 32 5309 0.6027500 0.7607 1 3.362400 0.7239 2 3.290500 0.84540 2 0.6070 0.6007 0 3.68850 0.9360 3 10.948400 0.8380 7 6007 2397 2191 1596 5859 27.24014 0.7337 0 231 3303 6.993642 0.6809 0 321 1072 29.944030 0.54100 0 571 1120 50.98214 0.54040 0 892 2192 40.69343 0.608200 0 293 3692 7.936078 0.41630 0 766 5779 13.254888 0.87670 1 739 12.3023140 0.37940 0 1707 28.41685 0.8466 1 625 4057.618 15.403126 0.662900 0 387 1378.067 28.082823 0.8878 1 126 5449 2.3123509 0.33780 0 3959 6006.510 65.91182 0.6115 0 2397 315 13.141427 0.6161 0 303 12.640801 0.8788 1 273 2191 12.4600639 0.78630 1 240 2191.439 10.951706 0.8114 1 201 6007 3.3460962 0.8922 1 3.315800 0.7254 1 3.114500 0.79680 2 0.6115 0.6061 0 3.98480 0.9711 4 11.026600 0.8725 7 Yes 0 0 \$0 0 0 \$0 0 Census Tract 7.03, Anchorage Municipality, Alaska 19589 147100 26957 194200 22723.24 170636 4233.76 0.1863185 23564 0.1380951 138.68 150.83 Anchorage Municipality, Alaska Anchorage, AK MSA C1126
02020000801 02020 000801 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 6878 2593 2380 1901 6821 27.86981 0.6792 0 514 3678 13.974986 0.86730 1 415 976 42.52049 0.57230 0 595 1404 42.37892 0.29620 0 1010 2380 42.43697 0.418100 0 383 3752 10.207889 0.42440 0 1608 7420 21.671159 0.72520 0 378 5.495784 0.132500 0 2001 29.092759 0.74220 0 879 4943 17.782723 0.804800 1 535 1648 32.46359 0.9101 1 328 6158 5.3264047 0.50640 0 4037 6878 58.69439 0.6022 0 2593 323 12.456614 0.62550 0 122 4.7049749 0.7403 0 246 2380 10.3361345 0.7506 1 250 2380 10.5042017 0.76960 1 127 6878 1.8464670 0.8242 1 3.114200 0.6623 1 3.096000 0.76840 2 0.6022 0.5960 0 3.71020 0.9397 3 10.522600 0.7937 6 8039 2575 2349 1877 7913 23.72046 0.6629 0 224 3708 6.040992 0.5815 0 364 1245 29.236948 0.51410 0 332 1104 30.07246 0.11540 0 696 2349 29.62963 0.234900 0 631 4356 14.485767 0.63730 0 1269 7749 16.376307 0.93800 1 569 7.0779948 0.09286 0 2750 34.20823 0.9664 1 925 5009.000 18.466760 0.806400 1 342 1360.000 25.147059 0.8398 1 178 7027 2.5330867 0.35840 0 6353 8039.000 79.02724 0.7276 0 2575 438 17.009709 0.6842 0 228 8.854369 0.8322 1 342 2349 14.5593870 0.82720 1 262 2349.000 11.153682 0.8169 1 101 8039 1.2563752 0.7476 0 3.054600 0.6607 1 3.063860 0.77520 3 0.7276 0.7212 0 3.90810 0.9647 3 10.754160 0.8443 7 Yes 0 0 \$0 0 0 \$0 0 Census Tract 8.01, Anchorage Municipality, Alaska 24433 214200 28895 217000 28342.28 248472 552.72 0.0195016 -31472 -0.1266622 175.52 189.05 Anchorage Municipality, Alaska Anchorage, AK MSA C1126
02020000802 02020 000802 AK Alaska Anchorage Municipality 4 West Region 9 Pacific Division 4412 1955 1860 927 4412 21.01088 0.5341 0 366 2358 15.521629 0.90830 1 329 993 33.13192 0.24940 0 427 867 49.25029 0.46580 0 756 1860 40.64516 0.351500 0 284 2541 11.176702 0.45970 0 944 4351 21.696162 0.72640 0 291 6.595648 0.206200 0 1116 25.294651 0.54610 0 456 3183 14.326107 0.630400 0 365 1034 35.29981 0.9397 1 147 4065 3.6162362 0.41080 0 2063 4412 46.75884 0.4982 0 1955 526 26.905371 0.81460 1 235 12.0204604 0.8530 1 101 1860 5.4301075 0.5881 0 144 1860 7.7419355 0.66870 0 0 4412 0.0000000 0.3743 0 2.980000 0.6306 1 2.733200 0.60110 1 0.4982 0.4931 0 3.29870 0.8370 2 9.510100 0.6929 4 4596 1925 1698 1372 4591 29.88456 0.7781 1 244 2652 9.200603 0.8347 1 173 857 20.186698 0.15430 0 314 841 37.33650 0.21580 0 487 1698 28.68080 0.205800 0 329 2968 11.084906 0.54380 0 851 4533 18.773439 0.96420 1 366 7.9634465 0.13400 0 1030 22.41079 0.5367 0 416 3503.000 11.875535 0.412100 0 383 1001.000 38.261738 0.9747 1 189 4158 4.5454545 0.50160 0 2768 4596.000 60.22628 0.5606 0 1925 621 32.259740 0.8439 1 175 9.090909 0.8354 1 129 1698 7.5971731 0.64450 0 66 1698.000 3.886926 0.4438 0 33 4596 0.7180157 0.6406 0 3.326600 0.7282 3 2.559100 0.51470 1 0.5606 0.5556 0 3.40820 0.8630 2 9.854500 0.7420 6 Yes 0 0 \$0 0 0 \$0 0 Census Tract 8.02, Anchorage Municipality, Alaska 26412 126100 30241 141400 30637.92 146276 -396.92 -0.0129552 -4876 -0.0333342 153.74 179.71 Anchorage Municipality, Alaska Anchorage, AK MSA C1126
svi_national_nmtc_df0 <- left_join(svi_national_nmtc, census_pull_df, join_by("GEOID_2010_trt" == "GEOID"))

svi_national_nmtc_df1 <- left_join(svi_national_nmtc_df0, hpi_df_10_20, join_by("GEOID_2010_trt" == "GEOID10")) %>%
                          unite("county_fips", FIPS_st, FIPS_county, sep = "") 

svi_national_nmtc_df <- left_join(svi_national_nmtc_df1, msa_csa_crosswalk, join_by("county_fips" == "county_fips"))

svi_national_nmtc_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt county_fips FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 nmtc_eligibility pre10_nmtc_project_cnt pre10_nmtc_dollars pre10_nmtc_dollars_formatted post10_nmtc_project_cnt post10_nmtc_dollars post10_nmtc_dollars_formatted nmtc_flag NAME Median_Income_10 Median_Home_Value_10 Median_Income_19 Median_Home_Value_19 Median_Income_10adj Median_Home_Value_10adj Median_Income_Change Median_Income_Change_pct Median_Home_Value_Change Median_Home_Value_Change_pct housing_price_index10 housing_price_index20 county_title cbsa cbsa_code
01001020200 01001 020200 AL Alabama Autauga County 3 South Region 6 East South Central Division 2020 816 730 495 1992 24.84940 0.5954 0 68 834 8.153477 0.57540 0 49 439 11.16173 0.02067 0 105 291 36.08247 0.30190 0 154 730 21.09589 0.09312 0 339 1265 26.798419 0.8392 1 313 2012 15.55666 0.6000 0 204 10.09901 0.3419 0 597 29.55446 0.8192 1 359 1515 23.69637 0.8791 1 132 456 28.947368 0.8351 1 15 1890 0.7936508 0.40130 0 1243 2020 61.534653 0.77810 1 816 0 0.0000000 0.1224 0 34 4.1666667 0.6664 0 13 730 1.780822 0.5406 0 115 730 15.7534247 0.83820 1 0 2020 0.0000 0.3640 0 2.70312 0.5665 1 3.27660 0.8614 3 0.77810 0.7709 1 2.53160 0.5047 1 9.28942 0.6832 6 1757 720 573 384 1511 25.413633 0.6427 0 29 717 4.044630 0.41320 0 33 392 8.418367 0.03542 0 116 181 64.08840 0.9086 1 149 573 26.00349 0.40410 0 139 1313 10.586443 0.5601 0 91 1533 5.936073 0.4343 0 284 16.163916 0.5169 0 325 18.49744 0.28510 0 164 1208.000 13.576159 0.4127 0 42 359.0000 11.6991643 0.39980 0 0 1651 0.0000000 0.09479 0 1116 1757.000 63.5173591 0.759100 1 720 3 0.4166667 0.2470 0 5 0.6944444 0.5106 0 9 573 1.5706806 0.46880 0 57 573.000 9.947644 0.7317 0 212 1757 12.0660216 0.9549 1 2.45440 0.4888 0 1.70929 0.10250 0 0.759100 0.752700 1 2.91300 0.6862 1 7.835790 0.4802 2 Yes 0 0 \$0 0 0 \$0 0 Census Tract 202, Autauga County, Alabama 19437 138500 20154 90500 22546.92 160660 -2392.92 -0.1061307 -70160 -0.4366986 123.78 123.37 Autauga County, Alabama Montgomery-Alexander City, AL CSA CS388
01001020700 01001 020700 AL Alabama Autauga County 3 South Region 6 East South Central Division 2664 1254 1139 710 2664 26.65165 0.6328 0 29 1310 2.213741 0.05255 0 134 710 18.87324 0.13890 0 187 429 43.58974 0.47090 0 321 1139 28.18262 0.28130 0 396 1852 21.382289 0.7478 0 345 2878 11.98749 0.4459 0 389 14.60210 0.6417 0 599 22.48499 0.4007 0 510 2168 23.52399 0.8752 1 228 712 32.022472 0.8712 1 0 2480 0.0000000 0.09298 0 694 2664 26.051051 0.51380 0 1254 8 0.6379585 0.2931 0 460 36.6826156 0.9714 1 0 1139 0.000000 0.1238 0 125 1139 10.9745391 0.74770 0 0 2664 0.0000 0.3640 0 2.16035 0.4069 0 2.88178 0.6997 2 0.51380 0.5090 0 2.50000 0.4882 1 8.05593 0.5185 3 3562 1313 1248 1370 3528 38.832200 0.8512 1 128 1562 8.194622 0.79350 1 168 844 19.905213 0.44510 0 237 404 58.66337 0.8359 1 405 1248 32.45192 0.60420 0 396 2211 17.910448 0.7857 1 444 3547 12.517620 0.7758 1 355 9.966311 0.1800 0 954 26.78271 0.79230 1 629 2593.000 24.257617 0.8730 1 171 797.0000 21.4554580 0.71860 0 0 3211 0.0000000 0.09479 0 1009 3562.000 28.3267827 0.466800 0 1313 14 1.0662605 0.3165 0 443 33.7395278 0.9663 1 73 1248 5.8493590 0.82110 1 17 1248.000 1.362180 0.1554 0 112 3562 3.1443010 0.8514 1 3.81040 0.8569 4 2.65869 0.58470 2 0.466800 0.462900 0 3.11070 0.7714 3 10.046590 0.7851 9 Yes 0 0 \$0 0 0 \$0 0 Census Tract 207, Autauga County, Alabama 22114 93800 20934 82400 25652.24 108808 -4718.24 -0.1839309 -26408 -0.2427027 95.94 108.47 Autauga County, Alabama Montgomery-Alexander City, AL CSA CS388
01001021100 01001 021100 AL Alabama Autauga County 3 South Region 6 East South Central Division 3298 1502 1323 860 3298 26.07641 0.6211 0 297 1605 18.504673 0.94340 1 250 1016 24.60630 0.32070 0 74 307 24.10423 0.11920 0 324 1323 24.48980 0.17380 0 710 2231 31.824294 0.8976 1 654 3565 18.34502 0.7018 0 411 12.46210 0.5001 0 738 22.37720 0.3934 0 936 2861 32.71583 0.9807 1 138 825 16.727273 0.5715 0 9 3155 0.2852615 0.25010 0 1979 3298 60.006064 0.77030 1 1502 14 0.9320905 0.3234 0 659 43.8748336 0.9849 1 44 1323 3.325775 0.7062 0 137 1323 10.3552532 0.73130 0 0 3298 0.0000 0.3640 0 3.33770 0.7351 2 2.69580 0.6028 1 0.77030 0.7631 1 3.10980 0.7827 1 9.91360 0.7557 5 3499 1825 1462 1760 3499 50.300086 0.9396 1 42 966 4.347826 0.45390 0 426 1274 33.437991 0.85200 1 52 188 27.65957 0.1824 0 478 1462 32.69494 0.61110 0 422 2488 16.961415 0.7638 1 497 3499 14.204058 0.8246 1 853 24.378394 0.8688 1 808 23.09231 0.58290 0 908 2691.100 33.740844 0.9808 1 179 811.6985 22.0525243 0.73230 0 8 3248 0.2463054 0.26220 0 1986 3498.713 56.7637257 0.717500 0 1825 29 1.5890411 0.3551 0 576 31.5616438 0.9594 1 88 1462 6.0191518 0.82690 1 148 1461.993 10.123166 0.7364 0 38 3499 1.0860246 0.7013 0 3.59300 0.8073 3 3.42700 0.91560 2 0.717500 0.711400 0 3.57910 0.9216 2 11.316600 0.9150 7 Yes 0 0 \$0 0 0 \$0 0 Census Tract 211, Autauga County, Alabama 17997 74000 20620 88600 20876.52 85840 -256.52 -0.0122875 2760 0.0321528 134.13 145.41 Autauga County, Alabama Montgomery-Alexander City, AL CSA CS388
01003010200 01003 010200 AL Alabama Baldwin County 3 South Region 6 East South Central Division 2612 1220 1074 338 2605 12.97505 0.2907 0 44 1193 3.688181 0.14720 0 172 928 18.53448 0.13090 0 31 146 21.23288 0.09299 0 203 1074 18.90130 0.05657 0 455 1872 24.305556 0.8016 1 456 2730 16.70330 0.6445 0 401 15.35222 0.6847 0 563 21.55436 0.3406 0 410 2038 20.11776 0.7755 1 64 779 8.215661 0.2181 0 0 2510 0.0000000 0.09298 0 329 2612 12.595712 0.31130 0 1220 38 3.1147541 0.4648 0 385 31.5573770 0.9545 1 20 1074 1.862197 0.5509 0 43 1074 4.0037244 0.40880 0 0 2612 0.0000 0.3640 0 1.94057 0.3398 1 2.11188 0.2802 1 0.31130 0.3084 0 2.74300 0.6129 1 7.10675 0.3771 3 2928 1312 1176 884 2928 30.191257 0.7334 0 29 1459 1.987663 0.13560 0 71 830 8.554217 0.03726 0 134 346 38.72832 0.3964 0 205 1176 17.43197 0.12010 0 294 2052 14.327485 0.6940 0 219 2925 7.487179 0.5423 0 556 18.989071 0.6705 0 699 23.87295 0.63390 0 489 2226.455 21.963167 0.8122 1 191 783.8820 24.3659136 0.77990 1 0 2710 0.0000000 0.09479 0 398 2927.519 13.5951280 0.251100 0 1312 13 0.9908537 0.3111 0 400 30.4878049 0.9557 1 6 1176 0.5102041 0.25900 0 81 1176.202 6.886570 0.6115 0 7 2928 0.2390710 0.4961 0 2.22540 0.4183 0 2.99129 0.76340 2 0.251100 0.249000 0 2.63340 0.5496 1 8.101190 0.5207 3 Yes 0 0 \$0 1 408000 \$408,000 1 Census Tract 102, Baldwin County, Alabama 23862 103200 26085 136900 27679.92 119712 -1594.92 -0.0576201 17188 0.1435779 128.38 166.27 Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01003010500 01003 010500 AL Alabama Baldwin County 3 South Region 6 East South Central Division 4230 1779 1425 498 3443 14.46413 0.3337 0 166 1625 10.215385 0.71790 0 151 1069 14.12535 0.04638 0 196 356 55.05618 0.73830 0 347 1425 24.35088 0.17010 0 707 2945 24.006791 0.7967 1 528 4001 13.19670 0.5005 0 619 14.63357 0.6436 0 790 18.67612 0.1937 0 536 3096 17.31266 0.6572 0 165 920 17.934783 0.6102 0 20 4021 0.4973887 0.32320 0 754 4230 17.825059 0.40230 0 1779 97 5.4525014 0.5525 0 8 0.4496908 0.4600 0 63 1425 4.421053 0.7762 1 90 1425 6.3157895 0.56910 0 787 4230 18.6052 0.9649 1 2.51890 0.5121 1 2.42790 0.4539 0 0.40230 0.3986 0 3.32270 0.8628 2 8.67180 0.6054 3 5877 1975 1836 820 5244 15.636918 0.3902 0 90 2583 3.484321 0.33610 0 159 1345 11.821561 0.10530 0 139 491 28.30957 0.1924 0 298 1836 16.23094 0.09053 0 570 4248 13.418079 0.6669 0 353 5247 6.727654 0.4924 0 1109 18.870172 0.6645 0 1144 19.46571 0.34110 0 717 4102.545 17.476956 0.6332 0 103 1286.1180 8.0085961 0.23410 0 0 5639 0.0000000 0.09479 0 868 5877.481 14.7682323 0.270900 0 1975 26 1.3164557 0.3359 0 45 2.2784810 0.6271 0 9 1836 0.4901961 0.25400 0 116 1835.798 6.318779 0.5811 0 633 5877 10.7708014 0.9507 1 1.97613 0.3410 0 1.96769 0.19610 0 0.270900 0.268600 0 2.74880 0.6077 1 6.963520 0.3406 1 Yes 0 0 \$0 0 0 \$0 0 Census Tract 105, Baldwin County, Alabama 21585 121100 28301 148500 25038.60 140476 3262.40 0.1302948 8024 0.0571201 191.57 213.49 Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01003010600 01003 010600 AL Alabama Baldwin County 3 South Region 6 East South Central Division 3724 1440 1147 1973 3724 52.98067 0.9342 1 142 1439 9.867964 0.69680 0 235 688 34.15698 0.62950 0 187 459 40.74074 0.40290 0 422 1147 36.79163 0.55150 0 497 1876 26.492537 0.8354 1 511 3661 13.95794 0.5334 0 246 6.60580 0.1481 0 1256 33.72718 0.9305 1 496 2522 19.66693 0.7587 1 274 838 32.696897 0.8779 1 32 3479 0.9198045 0.42810 0 2606 3724 69.978518 0.81840 1 1440 21 1.4583333 0.3683 0 321 22.2916667 0.9036 1 97 1147 8.456844 0.8956 1 167 1147 14.5597210 0.82090 1 0 3724 0.0000 0.3640 0 3.55130 0.7859 2 3.14330 0.8145 3 0.81840 0.8108 1 3.35240 0.8725 3 10.86540 0.8550 9 4115 1534 1268 1676 3997 41.931449 0.8814 1 294 1809 16.252073 0.96740 1 341 814 41.891892 0.94320 1 204 454 44.93392 0.5438 0 545 1268 42.98107 0.83620 1 624 2425 25.731959 0.9002 1 994 4115 24.155529 0.9602 1 642 15.601458 0.4841 0 1126 27.36331 0.81750 1 568 2989.000 19.003011 0.7045 0 212 715.0000 29.6503497 0.85920 1 56 3825 1.4640523 0.53120 0 2715 4115.000 65.9781288 0.773200 1 1534 0 0.0000000 0.1079 0 529 34.4850065 0.9685 1 101 1268 7.9652997 0.87950 1 89 1268.000 7.018927 0.6184 0 17 4115 0.4131227 0.5707 0 4.54540 0.9754 5 3.39650 0.90810 2 0.773200 0.766700 1 3.14500 0.7858 2 11.860100 0.9520 10 Yes 0 0 \$0 1 8000000 \$8,000,000 1 Census Tract 106, Baldwin County, Alabama 17788 81600 16453 104700 20634.08 94656 -4181.08 -0.2026298 10044 0.1061105 NA NA Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01003011000 01003 011000 AL Alabama Baldwin County 3 South Region 6 East South Central Division 3758 2012 1576 1053 3758 28.02022 0.6597 0 66 1707 3.866432 0.16250 0 293 1297 22.59059 0.25080 0 83 279 29.74910 0.19030 0 376 1576 23.85787 0.15710 0 744 2723 27.322806 0.8465 1 996 4137 24.07542 0.8462 1 713 18.97286 0.8429 1 804 21.39436 0.3306 0 763 3295 23.15630 0.8670 1 155 1145 13.537118 0.4538 0 50 3475 1.4388489 0.51460 0 516 3758 13.730708 0.33300 0 2012 0 0.0000000 0.1224 0 606 30.1192843 0.9484 1 42 1576 2.664975 0.6476 0 96 1576 6.0913706 0.55620 0 0 3758 0.0000 0.3640 0 2.67200 0.5579 2 3.00890 0.7581 2 0.33300 0.3299 0 2.63860 0.5614 1 8.65250 0.6030 5 4921 1979 1732 1539 4908 31.356968 0.7523 1 150 2105 7.125891 0.72850 0 214 1471 14.547927 0.20260 0 59 261 22.60536 0.1167 0 273 1732 15.76212 0.07981 0 936 3332 28.091237 0.9206 1 861 4921 17.496444 0.8930 1 1039 21.113595 0.7653 1 1183 24.03983 0.64410 0 585 3738.000 15.650080 0.5371 0 81 1151.0000 7.0373588 0.19000 0 101 4546 2.2217334 0.61440 0 1244 4921.000 25.2794148 0.427800 0 1979 0 0.0000000 0.1079 0 527 26.6296109 0.9393 1 83 1732 4.7921478 0.77460 1 151 1732.000 8.718245 0.6904 0 20 4921 0.4064215 0.5688 0 3.37421 0.7528 3 2.75090 0.63780 1 0.427800 0.424200 0 3.08100 0.7597 2 9.633910 0.7366 6 Yes 0 0 \$0 0 0 \$0 0 Census Tract 110, Baldwin County, Alabama 19340 126400 23679 158700 22434.40 146624 1244.60 0.0554773 12076 0.0823603 129.69 188.85 Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01003011406 01003 011406 AL Alabama Baldwin County 3 South Region 6 East South Central Division 3317 6418 1307 583 3317 17.57612 0.4181 0 70 1789 3.912800 0.16690 0 221 685 32.26277 0.57540 0 284 622 45.65916 0.52130 0 505 1307 38.63810 0.60430 0 168 2255 7.450111 0.2800 0 919 3677 24.99320 0.8623 1 452 13.62677 0.5791 0 673 20.28942 0.2668 0 366 2769 13.21777 0.4276 0 96 887 10.822999 0.3359 0 180 3066 5.8708415 0.77920 1 473 3317 14.259873 0.34330 0 6418 3976 61.9507635 0.9655 1 384 5.9831723 0.7063 0 17 1307 1.300689 0.4632 0 10 1307 0.7651109 0.08684 0 0 3317 0.0000 0.3640 0 2.33160 0.4577 1 2.38860 0.4323 1 0.34330 0.3401 0 2.58584 0.5335 1 7.64934 0.4576 3 3226 7850 1797 228 3215 7.091757 0.1241 0 72 2055 3.503650 0.33910 0 302 1139 26.514486 0.69300 0 230 658 34.95441 0.3131 0 532 1797 29.60490 0.52020 0 128 2726 4.695525 0.2384 0 530 3226 16.429014 0.8749 1 790 24.488531 0.8715 1 342 10.60136 0.05624 0 280 2884.000 9.708738 0.1832 0 58 792.0000 7.3232323 0.20270 0 15 3107 0.4827808 0.34070 0 15 3226.000 0.4649721 0.002512 0 7850 5394 68.7133758 0.9706 1 274 3.4904459 0.6697 0 23 1797 1.2799110 0.41980 0 26 1797.000 1.446856 0.1647 0 0 3226 0.0000000 0.1831 0 2.09670 0.3785 1 1.65434 0.08785 1 0.002512 0.002491 0 2.40790 0.4381 1 6.161452 0.2215 3 Yes 0 0 \$0 0 0 \$0 0 Census Tract 114.06, Baldwin County, Alabama 29838 252000 32201 224200 34612.08 292320 -2411.08 -0.0696601 -68120 -0.2330323 NA NA Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01003011407 01003 011407 AL Alabama Baldwin County 3 South Region 6 East South Central Division 5187 6687 2066 1404 5172 27.14617 0.6423 0 172 1935 8.888889 0.63280 0 482 1433 33.63573 0.61530 0 367 633 57.97788 0.79510 1 849 2066 41.09390 0.67110 0 278 3618 7.683803 0.2906 0 1027 4945 20.76845 0.7735 1 1398 26.95200 0.9629 1 1263 24.34933 0.5302 0 596 3792 15.71730 0.5759 0 158 1633 9.675444 0.2833 0 29 4867 0.5958496 0.35240 0 170 5187 3.277424 0.07984 0 6687 2772 41.4535666 0.9251 1 197 2.9460147 0.6326 0 90 2066 4.356244 0.7729 1 0 2066 0.0000000 0.02586 0 0 5187 0.0000 0.3640 0 3.01030 0.6516 1 2.70470 0.6077 1 0.07984 0.0791 0 2.72046 0.6014 2 8.51530 0.5852 4 5608 7576 2543 1058 5602 18.886112 0.4835 0 32 2631 1.216268 0.05882 0 581 1979 29.358262 0.77080 1 309 564 54.78723 0.7671 1 890 2543 34.99803 0.67250 0 230 4433 5.188360 0.2698 0 776 5602 13.852196 0.8156 1 1527 27.228959 0.9205 1 567 10.11056 0.05099 0 615 5035.000 12.214498 0.3295 0 16 1746.0000 0.9163803 0.01566 0 0 5573 0.0000000 0.09479 0 441 5608.000 7.8637660 0.140300 0 7576 3055 40.3247096 0.9148 1 72 0.9503696 0.5383 0 0 2543 0.0000000 0.09796 0 125 2543.000 4.915454 0.4934 0 6 5608 0.1069900 0.4054 0 2.30022 0.4418 1 1.41144 0.04295 1 0.140300 0.139100 0 2.44986 0.4589 1 6.301820 0.2416 3 Yes 0 0 \$0 0 0 \$0 0 Census Tract 114.07, Baldwin County, Alabama 22317 292600 28418 241100 25887.72 339416 2530.28 0.0977406 -98316 -0.2896622 NA NA Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01003011502 01003 011502 AL Alabama Baldwin County 3 South Region 6 East South Central Division 9234 4606 3702 3160 9213 34.29936 0.7632 1 282 4002 7.046477 0.47570 0 526 2158 24.37442 0.31260 0 582 1544 37.69430 0.33410 0 1108 3702 29.92977 0.33740 0 997 6176 16.143135 0.6201 0 2074 10111 20.51231 0.7670 1 1450 15.70284 0.7043 0 2491 26.97639 0.6984 0 1542 7577 20.35106 0.7842 1 684 2718 25.165563 0.7767 1 532 8697 6.1170519 0.78590 1 3275 9234 35.466753 0.60970 0 4606 214 4.6461138 0.5268 0 828 17.9765523 0.8689 1 89 3702 2.404106 0.6192 0 293 3702 7.9146407 0.64700 0 0 9234 0.0000 0.3640 0 2.96340 0.6387 2 3.74950 0.9623 3 0.60970 0.6040 0 3.02590 0.7475 1 10.34850 0.8024 6 14165 6867 6002 2853 14165 20.141193 0.5175 0 313 7047 4.441606 0.46620 0 1181 4164 28.362152 0.74500 0 887 1838 48.25898 0.6211 0 2068 6002 34.45518 0.65900 0 1667 10750 15.506977 0.7286 0 2527 14165 17.839746 0.8980 1 3082 21.757854 0.7907 1 2506 17.69149 0.24240 0 3004 11659.000 25.765503 0.9038 1 407 3482.0000 11.6886847 0.39940 0 364 13519 2.6925068 0.65290 0 2755 14165.000 19.4493470 0.346300 0 6867 441 6.4220183 0.5555 0 526 7.6598223 0.7585 1 93 6002 1.5494835 0.46540 0 184 6002.000 3.065645 0.3373 0 0 14165 0.0000000 0.1831 0 3.26930 0.7261 1 2.98920 0.76250 2 0.346300 0.343400 0 2.29980 0.3856 1 8.904600 0.6398 4 Yes 0 0 \$0 2 8860000 \$8,860,000 1 Census Tract 115.02, Baldwin County, Alabama 20411 162700 22820 180400 23676.76 188732 -856.76 -0.0361857 -8332 -0.0441473 NA NA Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380

LIHTC Data

svi_divisional_lihtc_df0 <- left_join(svi_divisional_lihtc, census_pull_df, join_by("GEOID_2010_trt" == "GEOID"))

svi_divisional_lihtc_df1 <- left_join(svi_divisional_lihtc_df0, hpi_df_10_20, join_by("GEOID_2010_trt" == "GEOID10")) %>%
                          unite("county_fips", FIPS_st, FIPS_county, sep = "") 

svi_divisional_lihtc_df <- left_join(svi_divisional_lihtc_df1, msa_csa_crosswalk, join_by("county_fips" == "county_fips"))

svi_divisional_lihtc_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt county_fips FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 pre10_lihtc_project_cnt pre10_lihtc_project_dollars post10_lihtc_project_cnt post10_lihtc_project_dollars lihtc_flag lihtc_eligibility NAME Median_Income_10 Median_Home_Value_10 Median_Income_19 Median_Home_Value_19 Median_Income_10adj Median_Home_Value_10adj Median_Income_Change Median_Income_Change_pct Median_Home_Value_Change Median_Home_Value_Change_pct housing_price_index10 housing_price_index20 county_title cbsa cbsa_code
02050000100 02050 000100 AK Alaska Bethel Census Area 4 West Region 9 Pacific Division 9481 2776 2127 4499 9422 47.74995 0.9162 1 923 3537 26.095561 0.9936 1 224 1570 14.26752 0.010260 0 35 557 6.283663 0.012980 0 259 2127 12.17677 0.003169 0 1431 4685 30.544290 0.8055 1 2901 9557 30.354714 0.89790 1 688 7.256619 0.24940 0 3678 38.79338 0.97710 1 1085 5745 18.88599 0.8446 1 418 1677 24.92546 0.7894 1 771 8382 9.1982820 0.64930 0 9146 9481 96.46662 0.9412 1 2776 3 0.1080692 0.18850 0 14 0.5043228 0.5274 0 992 2127 46.638458 0.99440 1 1814 2127 85.28444 0.9993 1 0 9481 0.000000 0.3743 0 3.616369 0.7794 4 3.50980 0.9107 3 0.9412 0.9315 1 3.08390 0.7535 2 11.15127 0.8587 10 10311 2692 2104 5779 10267 56.28713 0.9839 1 870 3667 23.725116 0.9967 1 232 1494 15.52878 0.05333 0 95 610 15.57377 0.02547 0 327 2104 15.54183 0.009597 0 1228 5181 23.701988 0.78920 1 1639 10294 15.921896 0.9319 1 812 7.875085 0.12960 0 4008 38.87111 0.99260 1 1259 6286.0000 20.028635 0.85600 1 483 1769.0000 27.30356 0.8759 1 188 9020 2.0842572 0.31690 0 10181 10311.000 98.73921 0.9760 1 2692 1 0.0371471 0.16590 0 31 1.1515602 0.6200 0 1024 2104 48.669201 0.9978 1 1793 2104.0000 85.218631 0.9993 1 477 10311 4.6261274 0.9233 1 3.711297 0.8199 4 3.17100 0.82060 3 0.9760 0.9674 1 3.70630 0.9326 3 11.56460 0.9233 11 0 0 0 0 0 Yes Census Tract 1, Bethel Census Area, Alaska 10580 106600 10671 52100 12272.80 123656 -1601.80 -0.1305163 -71556 -0.5786699 NA NA NA NA NA
02050000300 02050 000300 AK Alaska Bethel Census Area 4 West Region 9 Pacific Division 1386 725 439 460 1383 33.26103 0.7628 1 118 596 19.798658 0.9694 1 38 308 12.33766 0.008283 0 10 131 7.633588 0.014190 0 48 439 10.93394 0.002703 0 168 777 21.621622 0.7013 0 477 1475 32.338983 0.92130 1 160 11.544011 0.55680 0 464 33.47763 0.89380 1 122 955 12.77487 0.5244 0 99 318 31.13208 0.8947 1 4 1284 0.3115265 0.08126 0 1161 1386 83.76623 0.8084 1 725 0 0.0000000 0.09395 0 8 1.1034483 0.6032 0 90 439 20.501139 0.89560 1 261 439 59.45330 0.9957 1 0 1386 0.000000 0.3743 0 3.357503 0.7224 3 2.95096 0.7007 2 0.8084 0.8000 1 2.96275 0.7006 2 10.07961 0.7498 8 1404 742 369 597 1379 43.29224 0.9267 1 152 646 23.529412 0.9965 1 50 267 18.72659 0.11360 0 27 102 26.47059 0.08218 0 77 369 20.86721 0.046030 0 149 794 18.765743 0.71930 0 345 1404 24.572650 0.9915 1 115 8.190883 0.14420 0 484 34.47293 0.96900 1 139 920.0005 15.108688 0.64470 0 89 276.0002 32.24635 0.9371 1 6 1243 0.4827031 0.11630 0 1240 1404.000 88.31906 0.8327 1 742 0 0.0000000 0.08271 0 9 1.2129380 0.6256 0 112 369 30.352304 0.9725 1 223 369.0005 60.433530 0.9961 1 94 1404 6.6951567 0.9478 1 3.680030 0.8126 3 2.81130 0.65190 2 0.8327 0.8253 1 3.62471 0.9189 3 10.94874 0.8637 9 0 0 0 0 0 Yes Census Tract 3, Bethel Census Area, Alaska 14778 197900 14646 160900 17142.48 229564 -2496.48 -0.1456312 -68664 -0.2991061 NA NA NA NA NA
02070000100 02070 000100 AK Alaska Dillingham Census Area 4 West Region 9 Pacific Division 2569 1354 584 1037 2565 40.42885 0.8513 1 236 853 27.667057 0.9954 1 68 398 17.08543 0.016280 0 34 186 18.279570 0.034550 0 102 584 17.46575 0.006339 0 384 1303 29.470453 0.7955 1 1140 2710 42.066421 0.98140 1 217 8.446867 0.33900 0 940 36.59011 0.95310 1 311 1728 17.99769 0.8126 1 94 442 21.26697 0.7005 0 203 2363 8.5907744 0.63010 0 2410 2569 93.81082 0.9081 1 1354 0 0.0000000 0.09395 0 14 1.0339734 0.5974 0 186 584 31.849315 0.96500 1 367 584 62.84247 0.9966 1 0 2569 0.000000 0.3743 0 3.629939 0.7830 4 3.43530 0.8919 2 0.9081 0.8988 1 3.02725 0.7274 2 11.00059 0.8430 9 2801 1444 718 1191 2792 42.65759 0.9224 1 183 1059 17.280453 0.9849 1 94 487 19.30185 0.12840 0 51 231 22.07792 0.05382 0 145 718 20.19499 0.039410 0 265 1619 16.368129 0.67640 0 552 2801 19.707247 0.9721 1 353 12.602642 0.39670 0 862 30.77472 0.91140 1 295 1939.1327 15.212986 0.65170 0 200 579.0000 34.54231 0.9555 1 49 2513 1.9498607 0.30380 0 2536 2801.124 90.53509 0.8619 1 1444 1 0.0692521 0.16740 0 10 0.6925208 0.5747 0 255 718 35.515320 0.9868 1 481 718.0000 66.991643 0.9972 1 230 2801 8.2113531 0.9566 1 3.595210 0.7924 3 3.21910 0.83820 2 0.8619 0.8543 1 3.68270 0.9288 3 11.35891 0.9048 9 0 0 0 0 0 Yes Census Tract 1, Dillingham Census Area, Alaska 10750 113500 17367 85900 12470.00 131660 4897.00 0.3927025 -45760 -0.3475619 NA NA NA NA NA
02122000100 02122 000100 AK Alaska Kenai Peninsula Borough 4 West Region 9 Pacific Division 251 428 138 90 251 35.85657 0.7982 1 29 145 20.000000 0.9707 1 54 90 60.00000 0.930300 1 0 48 0.000000 0.005509 0 54 138 39.13043 0.301700 0 21 186 11.290323 0.4631 0 198 460 43.043478 0.98470 1 6 2.390438 0.02129 0 61 24.30279 0.49430 0 56 395 14.17722 0.6201 0 18 57 31.57895 0.8999 1 0 233 0.0000000 0.02799 0 205 251 81.67331 0.7907 1 428 0 0.0000000 0.09395 0 20 4.6728972 0.7396 0 7 138 5.072464 0.57090 0 17 138 12.31884 0.8207 1 0 251 0.000000 0.3743 0 3.518400 0.7575 3 2.06358 0.2722 1 0.7907 0.7826 1 2.59945 0.5334 1 8.97213 0.6292 6 531 307 131 193 523 36.90249 0.8743 1 74 324 22.839506 0.9958 1 23 92 25.00000 0.32780 0 4 39 10.25641 0.01129 0 27 131 20.61069 0.043330 0 6 389 1.542417 0.05899 0 220 523 42.065010 0.9998 1 12 2.259887 0.01198 0 111 20.90395 0.43940 0 50 412.0000 12.135924 0.43280 0 23 72.0000 31.94445 0.9342 1 0 512 0.0000000 0.02391 0 437 531.000 82.29756 0.7611 1 307 0 0.0000000 0.08271 0 16 5.2117264 0.7700 1 11 131 8.396947 0.6735 0 42 131.0000 32.061070 0.9796 1 111 531 20.9039548 0.9772 1 2.972220 0.6420 3 1.84229 0.16030 1 0.7611 0.7544 1 3.48301 0.8841 3 9.05862 0.6447 8 0 0 0 0 0 Yes Census Tract 1, Kenai Peninsula Borough, Alaska 22885 515600 NA 32200 26546.60 598096 NA NA -565896 -0.9461625 NA NA NA NA NA
02180000100 02180 000100 AK Alaska Nome Census Area 4 West Region 9 Pacific Division 5766 2016 1373 3052 5552 54.97118 0.9552 1 519 2134 24.320525 0.9899 1 224 852 26.29108 0.095960 0 94 521 18.042227 0.033620 0 318 1373 23.16096 0.021070 0 580 2709 21.410114 0.6970 0 1988 5811 34.210979 0.93800 1 299 5.185571 0.11630 0 2214 38.39750 0.97400 1 580 3550 16.33803 0.7460 0 439 1083 40.53555 0.9715 1 95 5090 1.8664047 0.26950 0 5430 5766 94.17274 0.9125 1 2016 15 0.7440476 0.22730 0 27 1.3392857 0.6231 0 495 1373 36.052440 0.97870 1 1167 1373 84.99636 0.9991 1 187 5766 3.243149 0.8747 1 3.601170 0.7768 3 3.07730 0.7608 2 0.9125 0.9031 1 3.70290 0.9385 3 11.29387 0.8751 9 5901 2111 1441 2939 5789 50.76870 0.9667 1 554 2224 24.910072 0.9980 1 237 1047 22.63610 0.23610 0 56 394 14.21320 0.02099 0 293 1441 20.33310 0.040350 0 586 2969 19.737285 0.73470 0 1202 5852 20.539986 0.9780 1 469 7.947806 0.13320 0 2245 38.04440 0.99060 1 590 3606.9999 16.357084 0.71430 0 532 1175.0000 45.27660 0.9916 1 161 5296 3.0400302 0.39890 0 5578 5901.000 94.52635 0.9154 1 2111 6 0.2842255 0.17600 0 23 1.0895310 0.6155 0 602 1441 41.776544 0.9943 1 1240 1441.0000 86.051353 0.9993 1 351 5901 5.9481444 0.9413 1 3.717750 0.8217 3 3.22860 0.84100 2 0.9154 0.9073 1 3.72640 0.9367 3 11.58815 0.9255 9 0 0 0 0 0 Yes Census Tract 1, Nome Census Area, Alaska 11287 103000 15051 88100 13092.92 119480 1958.08 0.1495526 -31380 -0.2626381 NA NA NA NA NA
02290000100 02290 000100 AK Alaska Yukon-Koyukuk Census Area 4 West Region 9 Pacific Division 1127 969 515 482 1127 42.76841 0.8749 1 165 551 29.945553 0.9970 1 104 386 26.94301 0.106600 0 16 129 12.403101 0.019980 0 120 515 23.30097 0.022180 0 216 727 29.711142 0.7981 1 492 1121 43.889384 0.98650 1 65 5.767524 0.14900 0 329 29.19255 0.74620 0 193 825 23.39394 0.9394 1 85 247 34.41296 0.9316 1 13 1049 1.2392755 0.20170 0 960 1127 85.18190 0.8206 1 969 0 0.0000000 0.09395 0 30 3.0959752 0.7027 0 83 515 16.116505 0.84800 1 333 515 64.66019 0.9969 1 0 1127 0.000000 0.3743 0 3.678680 0.7918 4 2.96790 0.7088 2 0.8206 0.8122 1 3.01585 0.7215 2 10.48303 0.7894 9 1118 1030 445 516 1097 47.03737 0.9495 1 94 463 20.302376 0.9929 1 68 346 19.65318 0.13910 0 22 99 22.22222 0.05448 0 90 445 20.22472 0.039600 0 125 703 17.780939 0.70070 0 161 1099 14.649681 0.9100 1 159 14.221825 0.49590 0 338 30.23256 0.89890 1 158 761.0000 20.762155 0.87640 1 88 218.0000 40.36697 0.9809 1 0 1038 0.0000000 0.02391 0 1001 1118.000 89.53488 0.8480 1 1030 0 0.0000000 0.08271 0 17 1.6504854 0.6556 0 76 445 17.078652 0.8684 1 274 445.0000 61.573034 0.9965 1 58 1118 5.1878354 0.9330 1 3.592700 0.7918 3 3.27601 0.85820 3 0.8480 0.8405 1 3.53621 0.8979 3 11.25292 0.8955 10 0 0 0 0 0 Yes Census Tract 1, Yukon-Koyukuk Census Area, Alaska 14127 91000 16500 88100 16387.32 105560 112.68 0.0068760 -17460 -0.1654036 NA NA NA NA NA
02290000400 02290 000400 AK Alaska Yukon-Koyukuk Census Area 4 West Region 9 Pacific Division 1173 751 377 573 1156 49.56747 0.9275 1 106 509 20.825147 0.9770 1 35 228 15.35088 0.012330 0 26 149 17.449664 0.031190 0 61 377 16.18037 0.005034 0 114 646 17.647059 0.6307 0 419 1005 41.691542 0.97960 1 101 8.610401 0.35070 0 362 30.86104 0.81090 1 109 696 15.66092 0.7109 0 80 230 34.78261 0.9347 1 0 1039 0.0000000 0.02799 0 995 1173 84.82523 0.8172 1 751 0 0.0000000 0.09395 0 18 2.3968043 0.6773 0 53 377 14.058355 0.81990 1 208 377 55.17241 0.9947 1 0 1173 0.000000 0.3743 0 3.519834 0.7583 3 2.83519 0.6497 2 0.8172 0.8088 1 2.96015 0.6987 2 10.13237 0.7552 8 1035 823 394 442 1030 42.91262 0.9240 1 76 481 15.800416 0.9754 1 66 292 22.60274 0.23430 0 21 102 20.58824 0.04701 0 87 394 22.08122 0.063080 0 88 653 13.476263 0.61280 0 291 1032 28.197674 0.9971 1 141 13.623188 0.45900 0 295 28.50242 0.84980 1 184 736.9996 24.966091 0.94930 1 71 214.9998 33.02329 0.9430 1 2 949 0.2107482 0.07122 0 904 1035.000 87.34303 0.8185 1 823 2 0.2430134 0.17400 0 3 0.3645200 0.5127 0 41 394 10.406091 0.7362 0 259 393.9995 65.736117 0.9969 1 24 1035 2.3188406 0.8486 1 3.572380 0.7884 3 3.27232 0.85640 3 0.8185 0.8113 1 3.26840 0.8181 2 10.93160 0.8621 9 0 0 0 0 0 Yes Census Tract 4, Yukon-Koyukuk Census Area, Alaska 14207 92900 15492 55600 16480.12 107764 -988.12 -0.0599583 -52164 -0.4840578 NA NA NA NA NA
06001400700 06001 400700 CA California Alameda County 4 West Region 9 Pacific Division 3942 2009 1706 1186 3942 30.08625 0.7161 0 191 1969 9.700356 0.6400 0 298 607 49.09390 0.760800 1 658 1099 59.872611 0.748900 0 956 1706 56.03751 0.847400 1 380 2787 13.634733 0.5333 0 546 3779 14.448267 0.47150 0 451 11.440893 0.55060 0 692 17.55454 0.17100 0 707 3177 22.25370 0.9237 1 186 688 27.03488 0.8296 1 100 3664 2.7292576 0.34520 0 2542 3942 64.48503 0.6485 0 2009 78 3.8825286 0.39170 0 0 0.0000000 0.2497 0 25 1706 1.465416 0.27860 0 329 1706 19.28488 0.9224 1 0 3942 0.000000 0.3743 0 3.208300 0.6849 1 2.82010 0.6426 2 0.6485 0.6419 0 2.21670 0.3596 1 8.89360 0.6187 4 5127 2037 1926 1155 5110 22.60274 0.6384 0 209 3522 5.934128 0.5700 0 248 677 36.63220 0.77480 1 442 1248 35.41667 0.18340 0 690 1925 35.84416 0.439200 0 200 3980 5.025126 0.26040 0 462 5123 9.018153 0.7215 0 478 9.323191 0.20110 0 957 18.66589 0.30330 0 573 4166.1857 13.753588 0.55250 0 224 873.8465 25.63379 0.8488 1 188 4819 3.9012243 0.46260 0 2892 5126.788 56.40959 0.5263 0 2037 177 8.6892489 0.51730 0 0 0.0000000 0.2466 0 109 1926 5.659398 0.5535 0 249 1925.6234 12.930878 0.8598 1 21 5127 0.4095963 0.5222 0 2.629500 0.5445 0 2.36830 0.40540 1 0.5263 0.5217 0 2.69940 0.5738 1 8.22350 0.5369 2 0 0 0 0 0 Yes Census Tract 4007, Alameda County, California 25303 453500 38235 702500 29351.48 526060 8883.52 0.3026600 176440 0.3353990 350.20 784.95 Alameda County, California San Jose-San Francisco-Oakland, CA CSA CS488
06001400900 06001 400900 CA California Alameda County 4 West Region 9 Pacific Division 2466 1196 1123 405 2466 16.42336 0.4185 0 101 1484 6.805930 0.3730 0 270 439 61.50342 0.943300 1 323 684 47.222222 0.410700 0 593 1123 52.80499 0.772400 1 240 1699 14.125956 0.5464 0 100 2275 4.395604 0.07064 0 258 10.462287 0.48400 0 439 17.80211 0.17720 0 409 1868 21.89507 0.9182 1 202 400 50.50000 0.9951 1 0 2321 0.0000000 0.02799 0 1495 2466 60.62449 0.6182 0 1196 80 6.6889632 0.48380 0 0 0.0000000 0.2497 0 0 1123 0.000000 0.05961 0 204 1123 18.16563 0.9113 1 0 2466 0.000000 0.3743 0 2.180940 0.4177 1 2.60249 0.5376 2 0.6182 0.6119 0 2.07871 0.2993 1 7.48034 0.4369 4 2854 1221 1101 410 2854 14.36580 0.4046 0 104 2043 5.090553 0.4664 0 155 404 38.36634 0.82100 1 309 697 44.33286 0.36900 0 464 1101 42.14351 0.653600 0 163 2053 7.939601 0.41660 0 197 2849 6.914707 0.5867 0 203 7.112824 0.09481 0 462 16.18781 0.18410 0 199 2387.8971 8.333693 0.15390 0 142 585.5745 24.24969 0.8226 1 181 2663 6.7968457 0.60790 0 1875 2854.008 65.69709 0.6092 0 1221 152 12.4488124 0.60240 0 0 0.0000000 0.2466 0 49 1101 4.450500 0.4765 0 65 1101.4226 5.901459 0.6007 0 0 2854 0.0000000 0.1370 0 2.527900 0.5132 0 1.86331 0.16880 1 0.6092 0.6038 0 2.06320 0.2946 0 7.06361 0.3731 1 0 0 0 0 0 Yes Census Tract 4009, Alameda County, California 30185 470500 38375 774700 35014.60 545780 3360.40 0.0959714 228920 0.4194364 281.27 777.62 Alameda County, California San Jose-San Francisco-Oakland, CA CSA CS488
06001401100 06001 401100 CA California Alameda County 4 West Region 9 Pacific Division 3738 2218 2014 1244 3738 33.27983 0.7632 1 193 2527 7.637515 0.4589 0 230 400 57.50000 0.905100 1 927 1614 57.434944 0.685300 0 1157 2014 57.44786 0.875900 1 275 2920 9.417808 0.3945 0 716 4313 16.600974 0.55910 0 237 6.340289 0.18740 0 420 11.23596 0.06016 0 392 3734 10.49813 0.3470 0 123 535 22.99065 0.7451 0 367 3574 10.2686066 0.67930 0 1979 3738 52.94275 0.5530 0 2218 531 23.9404869 0.78650 1 0 0.0000000 0.2497 0 7 2014 0.347567 0.12930 0 567 2014 28.15293 0.9667 1 0 3738 0.000000 0.3743 0 3.051600 0.6495 2 2.01896 0.2542 0 0.5530 0.5473 0 2.50650 0.4877 2 8.13006 0.5257 4 4283 2222 2187 876 4283 20.45295 0.5868 0 194 3177 6.106390 0.5900 0 90 406 22.16749 0.21890 0 755 1781 42.39191 0.32490 0 845 2187 38.63740 0.538200 0 175 3482 5.025847 0.26060 0 454 4283 10.600047 0.7917 1 268 6.257296 0.06482 0 526 12.28111 0.08534 0 264 3757.5978 7.025765 0.08703 0 155 591.6622 26.19738 0.8596 1 114 4119 2.7676621 0.37920 0 2054 4283.310 47.95357 0.4417 0 2222 991 44.5994599 0.90590 1 0 0.0000000 0.2466 0 60 2187 2.743484 0.3343 0 553 2186.6359 25.289990 0.9637 1 114 4283 2.6616857 0.8651 1 2.767300 0.5836 1 1.47599 0.06543 1 0.4417 0.4378 0 3.31560 0.8335 3 8.00059 0.5035 5 0 0 1 1590984 1 Yes Census Tract 4011, Alameda County, California 23516 526800 48058 889800 27278.56 611088 20779.44 0.7617499 278712 0.4560914 530.92 1038.24 Alameda County, California San Jose-San Francisco-Oakland, CA CSA CS488
svi_national_lihtc_df0 <- left_join(svi_national_lihtc, census_pull_df, join_by("GEOID_2010_trt" == "GEOID"))

svi_national_lihtc_df1 <- left_join(svi_national_lihtc_df0, hpi_df_10_20, join_by("GEOID_2010_trt" == "GEOID10")) %>%
                          unite("county_fips", FIPS_st, FIPS_county, sep = "") 

svi_national_lihtc_df <- left_join(svi_national_lihtc_df1, msa_csa_crosswalk, join_by("county_fips" == "county_fips"))

svi_national_lihtc_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt county_fips FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 pre10_lihtc_project_cnt pre10_lihtc_project_dollars post10_lihtc_project_cnt post10_lihtc_project_dollars lihtc_flag lihtc_eligibility NAME Median_Income_10 Median_Home_Value_10 Median_Income_19 Median_Home_Value_19 Median_Income_10adj Median_Home_Value_10adj Median_Income_Change Median_Income_Change_pct Median_Home_Value_Change Median_Home_Value_Change_pct housing_price_index10 housing_price_index20 county_title cbsa cbsa_code
01005950700 01005 950700 AL Alabama Barbour County 3 South Region 6 East South Central Division 1753 687 563 615 1628 37.77641 0.8088 1 17 667 2.548726 0.06941 0 41 376 10.90426 0.01945 0 62 187 33.15508 0.24640 0 103 563 18.29485 0.04875 0 264 1208 21.85430 0.7570 1 201 1527 13.163065 0.4991 0 368 20.992584 0.89510 1 462 26.354820 0.66130 0 211 1085 19.44700 0.7505 1 107 399 26.81704 0.8048 1 0 1628 0.0000000 0.09298 0 861 1753 49.11580 0.7101 0 687 17 2.4745269 0.4324 0 38 5.5312955 0.6970 0 3 563 0.5328597 0.3037 0 19 563 3.374778 0.3529 0 233 1753 13.29150 0.9517 1 2.18306 0.4137 2 3.20468 0.8377 3 0.7101 0.7035 0 2.7377 0.6100 1 8.83554 0.6264 6 1527 691 595 565 1365 41.39194 0.8765 1 37 572 6.468532 0.6776 0 70 376 18.617021 0.38590 0 92 219 42.009132 0.47360 0 162 595 27.22689 0.44540 0 280 1114 25.13465 0.8942 1 105 1378 7.619739 0.5505 0 383 25.081860 0.88450 1 337 22.069417 0.51380 0 237 1041.0000 22.76657 0.8360 1 144 413.0000 34.86683 0.9114 1 11 1466 0.7503411 0.40700 0 711 1527.0000 46.56189 0.6441 0 691 13 1.8813314 0.3740 0 37 5.3545586 0.7152 0 0 595 0.0000000 0.09796 0 115 595.0000 19.327731 0.8859 1 149 1527 9.7576948 0.9470 1 3.44420 0.7707 2 3.55270 0.9403 3 0.6441 0.6387 0 3.02006 0.7337 2 10.66106 0.8537 7 0 0 0 0 0 Yes Census Tract 9507, Barbour County, Alabama 15257 133700 17244 137500 17698.12 155092 -454.12 -0.0256592 -17592 -0.1134294 131.05 135.61 Barbour County, Alabama Eufaula, AL-GA MicroSA C2164
01011952100 01011 952100 AL Alabama Bullock County 3 South Region 6 East South Central Division 1652 796 554 564 1652 34.14044 0.7613 1 46 816 5.637255 0.33630 0 96 458 20.96070 0.19930 0 62 96 64.58333 0.89170 1 158 554 28.51986 0.29220 0 271 1076 25.18587 0.8163 1 155 1663 9.320505 0.3183 0 199 12.046005 0.47180 0 420 25.423729 0.60240 0 327 1279 25.56685 0.9151 1 137 375 36.53333 0.9108 1 0 1590 0.0000000 0.09298 0 1428 1652 86.44068 0.8939 1 796 0 0.0000000 0.1224 0 384 48.2412060 0.9897 1 19 554 3.4296029 0.7145 0 45 554 8.122744 0.6556 0 0 1652 0.00000 0.3640 0 2.52440 0.5138 2 2.99308 0.7515 2 0.8939 0.8856 1 2.8462 0.6637 1 9.25758 0.6790 6 1382 748 549 742 1382 53.69030 0.9560 1 40 511 7.827789 0.7730 1 110 402 27.363184 0.71780 0 45 147 30.612245 0.23070 0 155 549 28.23315 0.47730 0 181 905 20.00000 0.8253 1 232 1382 16.787265 0.8813 1 164 11.866860 0.27170 0 250 18.089725 0.26290 0 258 1132.0000 22.79152 0.8368 1 99 279.0000 35.48387 0.9162 1 33 1275 2.5882353 0.64520 0 1347 1382.0000 97.46744 0.9681 1 748 0 0.0000000 0.1079 0 375 50.1336898 0.9922 1 0 549 0.0000000 0.09796 0 37 549.0000 6.739526 0.6039 0 0 1382 0.0000000 0.1831 0 3.91290 0.8785 4 2.93280 0.7342 2 0.9681 0.9599 1 1.98506 0.2471 1 9.79886 0.7570 8 0 0 0 0 0 Yes Census Tract 9521, Bullock County, Alabama 19754 58200 18598 66900 22914.64 67512 -4316.64 -0.1883791 -612 -0.0090651 NA NA NA NA NA
01015000300 01015 000300 AL Alabama Calhoun County 3 South Region 6 East South Central Division 3074 1635 1330 1904 3067 62.08021 0.9710 1 293 1362 21.512482 0.96630 1 180 513 35.08772 0.65450 0 383 817 46.87882 0.55040 0 563 1330 42.33083 0.70280 0 720 2127 33.85049 0.9148 1 628 2835 22.151675 0.8076 1 380 12.361744 0.49340 0 713 23.194535 0.45030 0 647 2111 30.64898 0.9708 1 298 773 38.55110 0.9247 1 0 2878 0.0000000 0.09298 0 2623 3074 85.32856 0.8883 1 1635 148 9.0519878 0.6465 0 6 0.3669725 0.4502 0 68 1330 5.1127820 0.8082 1 303 1330 22.781955 0.9029 1 0 3074 0.00000 0.3640 0 4.36250 0.9430 4 2.93218 0.7233 2 0.8883 0.8800 1 3.1718 0.8070 2 11.35478 0.9009 9 2390 1702 1282 1287 2390 53.84937 0.9566 1 102 1066 9.568480 0.8541 1 158 609 25.944171 0.67520 0 286 673 42.496285 0.48560 0 444 1282 34.63339 0.66340 0 467 1685 27.71513 0.9180 1 369 2379 15.510719 0.8562 1 342 14.309623 0.40850 0 548 22.928870 0.57100 0 647 1831.0000 35.33588 0.9862 1 202 576.0000 35.06944 0.9130 1 16 2134 0.7497657 0.40690 0 1896 2390.0000 79.33054 0.8451 1 1702 96 5.6404230 0.5329 0 0 0.0000000 0.2186 0 0 1282 0.0000000 0.09796 0 186 1282.0000 14.508580 0.8308 1 43 2390 1.7991632 0.7727 1 4.24830 0.9395 4 3.28560 0.8773 2 0.8451 0.8379 1 2.45296 0.4602 2 10.83196 0.8718 9 0 0 0 0 0 Yes Census Tract 3, Calhoun County, Alabama 12211 41700 18299 51300 14164.76 48372 4134.24 0.2918680 2928 0.0605309 NA NA Calhoun County, Alabama Anniston-Oxford, AL MSA C1150
01015000500 01015 000500 AL Alabama Calhoun County 3 South Region 6 East South Central Division 1731 1175 743 1042 1619 64.36072 0.9767 1 124 472 26.271186 0.98460 1 136 461 29.50108 0.48970 0 163 282 57.80142 0.79190 1 299 743 40.24226 0.64910 0 340 1270 26.77165 0.8389 1 460 1794 25.641026 0.8722 1 271 15.655690 0.70190 0 368 21.259388 0.32190 0 507 1449 34.98965 0.9885 1 150 386 38.86010 0.9269 1 0 1677 0.0000000 0.09298 0 1559 1731 90.06355 0.9123 1 1175 50 4.2553191 0.5128 0 4 0.3404255 0.4480 0 0 743 0.0000000 0.1238 0 122 743 16.419919 0.8473 1 0 1731 0.00000 0.3640 0 4.32150 0.9362 4 3.03218 0.7679 2 0.9123 0.9038 1 2.2959 0.3818 1 10.56188 0.8244 8 940 907 488 586 940 62.34043 0.9815 1 59 297 19.865320 0.9833 1 100 330 30.303030 0.79220 1 58 158 36.708861 0.34970 0 158 488 32.37705 0.60200 0 199 795 25.03145 0.8930 1 118 940 12.553192 0.7770 1 246 26.170213 0.90530 1 118 12.553192 0.08233 0 383 822.5089 46.56484 0.9984 1 30 197.8892 15.16000 0.5363 0 0 889 0.0000000 0.09479 0 898 940.3866 95.49264 0.9489 1 907 0 0.0000000 0.1079 0 2 0.2205072 0.4456 0 2 488 0.4098361 0.23670 0 146 487.6463 29.939736 0.9404 1 0 940 0.0000000 0.1831 0 4.23680 0.9379 4 2.61712 0.5593 2 0.9489 0.9409 1 1.91370 0.2196 1 9.71652 0.7468 8 0 0 0 0 0 Yes Census Tract 5, Calhoun County, Alabama 11742 38800 13571 38800 13620.72 45008 -49.72 -0.0036503 -6208 -0.1379310 NA NA Calhoun County, Alabama Anniston-Oxford, AL MSA C1150
01015000600 01015 000600 AL Alabama Calhoun County 3 South Region 6 East South Central Division 2571 992 796 1394 2133 65.35396 0.9789 1 263 905 29.060773 0.98990 1 121 306 39.54248 0.75940 1 209 490 42.65306 0.44810 0 330 796 41.45729 0.68030 0 641 1556 41.19537 0.9554 1 416 1760 23.636364 0.8383 1 220 8.556982 0.24910 0 584 22.714897 0.41610 0 539 1353 39.83740 0.9955 1 243 466 52.14592 0.9783 1 30 2366 1.2679628 0.48990 0 1944 2571 75.61260 0.8440 1 992 164 16.5322581 0.7673 1 8 0.8064516 0.5110 0 46 796 5.7788945 0.8329 1 184 796 23.115578 0.9049 1 614 2571 23.88176 0.9734 1 4.44280 0.9548 4 3.12890 0.8088 2 0.8440 0.8362 1 3.9895 0.9792 4 12.40520 0.9696 11 1950 964 719 837 1621 51.63479 0.9467 1 157 652 24.079755 0.9922 1 22 364 6.043956 0.01547 0 129 355 36.338028 0.34200 0 151 719 21.00139 0.23030 0 363 1387 26.17159 0.9048 1 351 1613 21.760694 0.9435 1 249 12.769231 0.32090 0 356 18.256410 0.27140 0 332 1259.7041 26.35540 0.9135 1 136 435.6156 31.22018 0.8775 1 0 1891 0.0000000 0.09479 0 1463 1949.9821 75.02633 0.8219 1 964 14 1.4522822 0.3459 0 8 0.8298755 0.5269 0 19 719 2.6425591 0.61120 0 197 719.0542 27.397100 0.9316 1 329 1950 16.8717949 0.9655 1 4.01750 0.9001 4 2.47809 0.4764 2 0.8219 0.8149 1 3.38110 0.8712 2 10.69859 0.8583 9 0 0 0 0 0 Yes Census Tract 6, Calhoun County, Alabama 10958 48000 14036 43300 12711.28 55680 1324.72 0.1042161 -12380 -0.2223420 NA NA Calhoun County, Alabama Anniston-Oxford, AL MSA C1150
01015002101 01015 002101 AL Alabama Calhoun County 3 South Region 6 East South Central Division 3872 1454 1207 1729 2356 73.38710 0.9916 1 489 2020 24.207921 0.97860 1 20 168 11.90476 0.02541 0 718 1039 69.10491 0.93320 1 738 1207 61.14333 0.96900 1 113 725 15.58621 0.6035 0 664 3943 16.839970 0.6495 0 167 4.313016 0.05978 0 238 6.146694 0.02255 0 264 2359 11.19118 0.3027 0 94 263 35.74144 0.9050 1 46 3769 1.2204829 0.48250 0 1601 3872 41.34814 0.6572 0 1454 761 52.3383769 0.9504 1 65 4.4704264 0.6738 0 5 1207 0.4142502 0.2791 0 113 1207 9.362055 0.7004 0 1516 3872 39.15289 0.9860 1 4.19220 0.9133 3 1.77253 0.1304 1 0.6572 0.6511 0 3.5897 0.9337 2 10.21163 0.7885 6 3238 1459 1014 1082 1836 58.93246 0.9735 1 251 1403 17.890235 0.9767 1 31 155 20.000000 0.44920 0 515 859 59.953434 0.85540 1 546 1014 53.84615 0.95350 1 134 916 14.62882 0.7033 0 251 3238 7.751699 0.5588 0 167 5.157505 0.03597 0 169 5.219271 0.02111 0 323 1667.0000 19.37612 0.7205 0 94 277.0000 33.93502 0.9040 1 0 3164 0.0000000 0.09479 0 1045 3238.0000 32.27301 0.5125 0 1459 607 41.6038382 0.9185 1 65 4.4551062 0.6949 0 24 1014 2.3668639 0.57900 0 85 1014.0000 8.382643 0.6775 0 1402 3238 43.2983323 0.9876 1 4.16580 0.9263 3 1.77637 0.1225 1 0.5125 0.5082 0 3.85750 0.9661 2 10.31217 0.8160 6 0 0 0 0 0 Yes Census Tract 21.01, Calhoun County, Alabama 4968 92000 9312 153500 5762.88 106720 3549.12 0.6158587 46780 0.4383433 NA NA Calhoun County, Alabama Anniston-Oxford, AL MSA C1150
01015002300 01015 002300 AL Alabama Calhoun County 3 South Region 6 East South Central Division 3882 1861 1608 1366 3882 35.18805 0.7753 1 186 1539 12.085770 0.80740 1 284 1109 25.60866 0.35530 0 202 499 40.48096 0.39670 0 486 1608 30.22388 0.34700 0 727 2610 27.85441 0.8534 1 547 3706 14.759849 0.5669 0 716 18.444101 0.82530 1 904 23.286966 0.45720 0 719 2919 24.63172 0.8986 1 207 1191 17.38035 0.5923 0 0 3720 0.0000000 0.09298 0 490 3882 12.62236 0.3118 0 1861 38 2.0419130 0.4070 0 199 10.6931757 0.7836 1 52 1608 3.2338308 0.6986 0 166 1608 10.323383 0.7304 0 0 3882 0.00000 0.3640 0 3.35000 0.7384 3 2.86638 0.6919 2 0.3118 0.3089 0 2.9836 0.7289 1 9.51178 0.7100 6 3265 1774 1329 1103 3265 33.78254 0.7880 1 122 1422 8.579465 0.8131 1 101 844 11.966825 0.10960 0 126 485 25.979381 0.15930 0 227 1329 17.08051 0.11070 0 267 2122 12.58247 0.6388 0 328 3265 10.045942 0.6808 0 440 13.476263 0.36070 0 843 25.819296 0.74470 0 530 2422.0000 21.88274 0.8097 1 254 861.0000 29.50058 0.8574 1 0 3026 0.0000000 0.09479 0 811 3265.0000 24.83920 0.4221 0 1774 7 0.3945885 0.2444 0 338 19.0529876 0.8924 1 19 1329 1.4296464 0.44520 0 120 1329.0000 9.029345 0.7016 0 0 3265 0.0000000 0.1831 0 3.03140 0.6608 2 2.86729 0.7016 2 0.4221 0.4185 0 2.46670 0.4669 1 8.78749 0.6230 5 0 0 0 0 0 Yes Census Tract 23, Calhoun County, Alabama 15086 77500 21540 78500 17499.76 89900 4040.24 0.2308740 -11400 -0.1268076 120.54 131.82 Calhoun County, Alabama Anniston-Oxford, AL MSA C1150
01023956700 01023 956700 AL Alabama Choctaw County 3 South Region 6 East South Central Division 3011 1772 1179 1715 3011 56.95782 0.9531 1 266 890 29.887640 0.99100 1 267 1035 25.79710 0.36240 0 79 144 54.86111 0.73440 0 346 1179 29.34690 0.31850 0 738 2053 35.94739 0.9287 1 543 2904 18.698347 0.7133 0 569 18.897376 0.84040 1 648 21.521089 0.33840 0 813 2273 35.76771 0.9901 1 252 771 32.68482 0.8778 1 0 2880 0.0000000 0.09298 0 2455 3011 81.53437 0.8712 1 1772 38 2.1444695 0.4136 0 485 27.3702032 0.9349 1 72 1179 6.1068702 0.8435 1 109 1179 9.245123 0.6964 0 0 3011 0.00000 0.3640 0 3.90460 0.8597 3 3.13968 0.8131 3 0.8712 0.8631 1 3.2524 0.8387 2 11.16788 0.8840 9 3335 1912 1362 1135 3313 34.25898 0.7948 1 188 1147 16.390584 0.9686 1 212 1058 20.037807 0.45090 0 27 304 8.881579 0.02679 0 239 1362 17.54772 0.12350 0 466 2537 18.36815 0.7948 1 495 3335 14.842579 0.8413 1 791 23.718141 0.85250 1 613 18.380810 0.27840 0 884 2714.0000 32.57185 0.9752 1 230 918.0000 25.05447 0.7925 1 25 3103 0.8056719 0.41920 0 2637 3335.0000 79.07046 0.8436 1 1912 0 0.0000000 0.1079 0 758 39.6443515 0.9799 1 16 1362 1.1747430 0.40060 0 75 1362.0000 5.506608 0.5316 0 8 3335 0.2398801 0.4965 0 3.52300 0.7901 4 3.31780 0.8870 3 0.8436 0.8365 1 2.51650 0.4924 1 10.20090 0.8033 9 0 0 0 0 0 Yes Census Tract 9567, Choctaw County, Alabama 12737 60900 16852 63400 14774.92 70644 2077.08 0.1405815 -7244 -0.1025423 NA NA NA NA NA
01023957000 01023 957000 AL Alabama Choctaw County 3 South Region 6 East South Central Division 2567 1187 916 767 2567 29.87924 0.6933 0 145 1060 13.679245 0.86050 1 101 719 14.04729 0.04540 0 43 197 21.82741 0.09791 0 144 916 15.72052 0.02333 0 355 1704 20.83333 0.7366 0 289 2296 12.587108 0.4736 0 324 12.621737 0.51120 0 688 26.801714 0.68810 0 572 1746 32.76060 0.9809 1 121 636 19.02516 0.6414 0 5 2283 0.2190101 0.22520 0 1314 2567 51.18816 0.7225 0 1187 0 0.0000000 0.1224 0 335 28.2224094 0.9394 1 13 916 1.4192140 0.4834 0 70 916 7.641921 0.6353 0 0 2567 0.00000 0.3640 0 2.78733 0.5903 1 3.04680 0.7745 1 0.7225 0.7158 0 2.5445 0.5114 1 9.10113 0.6601 3 2077 1158 866 759 2072 36.63127 0.8256 1 61 780 7.820513 0.7726 1 106 735 14.421769 0.19760 0 11 131 8.396947 0.02525 0 117 866 13.51039 0.04053 0 351 1464 23.97541 0.8815 1 205 2077 9.870005 0.6729 0 402 19.354839 0.68820 0 496 23.880597 0.63430 0 466 1576.0000 29.56853 0.9544 1 154 612.0000 25.16340 0.7942 1 0 2002 0.0000000 0.09479 0 1018 2077.0000 49.01300 0.6638 0 1158 0 0.0000000 0.1079 0 439 37.9101900 0.9766 1 0 866 0.0000000 0.09796 0 42 866.0000 4.849884 0.4884 0 5 2077 0.2407318 0.4971 0 3.19313 0.7061 3 3.16589 0.8369 2 0.6638 0.6582 0 2.16796 0.3247 1 9.19078 0.6792 6 0 0 0 0 0 Yes Census Tract 9570, Choctaw County, Alabama 16224 51600 21740 74000 18819.84 59856 2920.16 0.1551639 14144 0.2363005 NA NA NA NA NA
01031010500 01031 010500 AL Alabama Coffee County 3 South Region 6 East South Central Division 4529 1950 1664 1649 4022 40.99950 0.8432 1 114 1424 8.005618 0.56260 0 309 1057 29.23368 0.48130 0 251 607 41.35091 0.41690 0 560 1664 33.65385 0.45740 0 1269 3370 37.65579 0.9387 1 516 4279 12.058892 0.4492 0 832 18.370501 0.82310 1 894 19.739457 0.23950 0 1023 3404 30.05288 0.9666 1 303 1112 27.24820 0.8108 1 43 4270 1.0070258 0.44510 0 1761 4529 38.88276 0.6383 0 1950 6 0.3076923 0.2576 0 276 14.1538462 0.8279 1 8 1664 0.4807692 0.2925 0 125 1664 7.512019 0.6289 0 507 4529 11.19452 0.9441 1 3.25110 0.7138 2 3.28510 0.8639 3 0.6383 0.6324 0 2.9510 0.7136 2 10.12550 0.7794 7 4815 2118 1731 1329 4470 29.73154 0.7256 0 147 1903 7.724645 0.7670 1 209 1256 16.640127 0.29310 0 208 475 43.789474 0.51620 0 417 1731 24.09012 0.33700 0 953 3728 25.56330 0.8985 1 668 4485 14.894091 0.8425 1 1053 21.869159 0.79500 1 766 15.908619 0.16760 0 1010 3719.0000 27.15784 0.9262 1 243 1133.0000 21.44748 0.7184 0 1 4577 0.0218484 0.19150 0 1643 4815.0000 34.12253 0.5321 0 2118 0 0.0000000 0.1079 0 475 22.4268178 0.9157 1 37 1731 2.1374928 0.55080 0 144 1731.0000 8.318891 0.6750 0 330 4815 6.8535826 0.9282 1 3.57060 0.8018 3 2.79870 0.6649 2 0.5321 0.5276 0 3.17760 0.7990 2 10.07900 0.7892 7 0 0 0 0 0 Yes Census Tract 105, Coffee County, Alabama 14641 88000 21367 78100 16983.56 102080 4383.44 0.2580990 -23980 -0.2349138 128.88 137.26 Coffee County, Alabama Dothan-Enterprise-Ozark, AL CSA CS222

Log NMTC and LIHTC Variables

svi_national_nmtc_df$Median_Income_10adj_log <- log(svi_national_nmtc_df$Median_Income_10adj)
svi_national_nmtc_df$Median_Income_19_log <- log(svi_national_nmtc_df$Median_Income_19)

svi_national_nmtc_df$Median_Home_Value_10adj_log = log(svi_national_nmtc_df$Median_Home_Value_10adj)
svi_national_nmtc_df$Median_Home_Value_19_log = log(svi_national_nmtc_df$Median_Home_Value_19)

svi_national_nmtc_df$housing_price_index10_log = log(svi_national_nmtc_df$housing_price_index10)
svi_national_nmtc_df$housing_price_index20_log = log(svi_national_nmtc_df$housing_price_index20)

svi_divisional_nmtc_df$Median_Income_10adj_log <- log(svi_divisional_nmtc_df$Median_Income_10adj)
svi_divisional_nmtc_df$Median_Income_19_log <- log(svi_divisional_nmtc_df$Median_Income_19)

svi_divisional_nmtc_df$Median_Home_Value_10adj_log = log(svi_divisional_nmtc_df$Median_Home_Value_10adj)
svi_divisional_nmtc_df$Median_Home_Value_19_log = log(svi_divisional_nmtc_df$Median_Home_Value_19)

svi_divisional_nmtc_df$housing_price_index10_log = log(svi_divisional_nmtc_df$housing_price_index10)
svi_divisional_nmtc_df$housing_price_index20_log = log(svi_divisional_nmtc_df$housing_price_index20)

svi_national_lihtc_df$Median_Income_10adj_log <- log(svi_national_lihtc_df$Median_Income_10adj)
svi_national_lihtc_df$Median_Income_19_log <- log(svi_national_lihtc_df$Median_Income_19)

svi_national_lihtc_df$Median_Home_Value_10adj_log = log(svi_national_lihtc_df$Median_Home_Value_10adj)
svi_national_lihtc_df$Median_Home_Value_19_log = log(svi_national_lihtc_df$Median_Home_Value_19)

svi_national_lihtc_df$housing_price_index10_log = log(svi_national_lihtc_df$housing_price_index10)
svi_national_lihtc_df$housing_price_index20_log = log(svi_national_lihtc_df$housing_price_index20)

svi_divisional_lihtc_df$Median_Income_10adj_log <- log(svi_divisional_lihtc_df$Median_Income_10adj)
svi_divisional_lihtc_df$Median_Income_19_log <- log(svi_divisional_lihtc_df$Median_Income_19)

svi_divisional_lihtc_df$Median_Home_Value_10adj_log = log(svi_divisional_lihtc_df$Median_Home_Value_10adj)
svi_divisional_lihtc_df$Median_Home_Value_19_log = log(svi_divisional_lihtc_df$Median_Home_Value_19)

svi_divisional_lihtc_df$housing_price_index10_log = log(svi_divisional_lihtc_df$housing_price_index10)
svi_divisional_lihtc_df$housing_price_index20_log = log(svi_divisional_lihtc_df$housing_price_index20)

Diff-in-Diff Models

NMTC Evaluation

Divisional SVI

# Create 2010 df, create post variable and set to 0, create year variable and set to 2010
nmtc_did10_div_svi <- svi_divisional_nmtc_df %>% 
  select(GEOID_2010_trt, cbsa, F_THEME1_10, F_THEME2_10, F_THEME3_10, F_THEME4_10, F_TOTAL_10, nmtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "nmtc_flag",
         "SVI_FLAG_COUNT_SES" = "F_THEME1_10",
         "SVI_FLAG_COUNT_HHCHAR" = "F_THEME2_10",
         "SVI_FLAG_COUNT_REM" = "F_THEME3_10",
         "SVI_FLAG_COUNT_HOUSETRANSPT" = "F_THEME4_10",
         "SVI_FLAG_COUNT_OVERALL" = "F_TOTAL_10") 

nrow(nmtc_did10_div_svi)
## [1] 4237
# Create 2020 df, create post variable and set to 1, create year variable and set to 2020
nmtc_did20_div_svi <- svi_divisional_nmtc_df %>% 
  select(GEOID_2010_trt, cbsa, F_THEME1_20, F_THEME2_20, F_THEME3_20, F_THEME4_20, F_TOTAL_20, nmtc_flag) %>% 
  mutate(post = 1,
         year = 2020) %>%
  rename("treat" = "nmtc_flag",
         "SVI_FLAG_COUNT_SES" = "F_THEME1_20",
         "SVI_FLAG_COUNT_HHCHAR" = "F_THEME2_20",
         "SVI_FLAG_COUNT_REM" = "F_THEME3_20",
         "SVI_FLAG_COUNT_HOUSETRANSPT" = "F_THEME4_20",
         "SVI_FLAG_COUNT_OVERALL" = "F_TOTAL_20"
  )


nrow(nmtc_did20_div_svi)
## [1] 4237
nmtc_diff_in_diff_div_svi <- bind_rows(nmtc_did10_div_svi, nmtc_did20_div_svi)

nmtc_diff_in_diff_div_svi <- nmtc_diff_in_diff_div_svi %>% arrange(post, treat, GEOID_2010_trt)

nrow(nmtc_diff_in_diff_div_svi)
## [1] 8474

Divisional Median Income

# Create 2010 df, create post variable and set to 0, create year variable and set to 2010, remove any tracts that don't have data for 2010 and 2019
nmtc_did10_div_inc <- svi_divisional_nmtc_df %>% 
  filter(!is.na(Median_Income_10adj_log)) %>% filter(!is.na(Median_Income_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Income_10adj_log, nmtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "nmtc_flag",
         "MEDIAN_INCOME" = "Median_Income_10adj_log") 


nrow(nmtc_did10_div_inc)
## [1] 4234
# Create 2019 df, create post variable and set to 1, create year variable and set to 2019, remove any tracts that don't have data for 2010 and 2019
nmtc_did19_div_inc <- svi_divisional_nmtc_df %>% 
  filter(!is.na(Median_Income_10adj_log)) %>% filter(!is.na(Median_Income_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Income_19_log, nmtc_flag) %>% 
  mutate(post = 1,
         year = 2019) %>%
  rename("treat" = "nmtc_flag",
         "MEDIAN_INCOME" = "Median_Income_19_log") 


nrow(nmtc_did19_div_inc)
## [1] 4234
nmtc_diff_in_diff_div_inc <- bind_rows(nmtc_did10_div_inc, nmtc_did19_div_inc)

nmtc_diff_in_diff_div_inc <- nmtc_diff_in_diff_div_inc %>% arrange(post, treat, GEOID_2010_trt)

nrow(nmtc_diff_in_diff_div_inc)
## [1] 8468

Divisional Home Value

nmtc_did10_div_mhv <- svi_divisional_nmtc_df %>% 
  filter(!is.na(Median_Home_Value_10adj_log)) %>% filter(!is.na(Median_Home_Value_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Home_Value_10adj_log, nmtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "nmtc_flag",
         "MEDIAN_HOME_VALUE" = "Median_Home_Value_10adj_log") 


nrow(nmtc_did10_div_mhv)
## [1] 4074
nmtc_did19_div_mhv <- svi_divisional_nmtc_df %>% 
  filter(!is.na(Median_Home_Value_10adj_log)) %>% filter(!is.na(Median_Home_Value_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Home_Value_19_log, nmtc_flag) %>% 
  mutate(post = 1,
         year = 2019) %>%
  rename("treat" = "nmtc_flag",
         "MEDIAN_HOME_VALUE" = "Median_Home_Value_19_log") 


nrow(nmtc_did19_div_mhv)
## [1] 4074
nmtc_diff_in_diff_div_mhv <- bind_rows(nmtc_did10_div_mhv, nmtc_did19_div_mhv)

nmtc_diff_in_diff_div_mhv <- nmtc_diff_in_diff_div_mhv %>% arrange(post, treat, GEOID_2010_trt)

nrow(nmtc_diff_in_diff_div_mhv)
## [1] 8148

Divisional House Price Index

nmtc_did10_div_hpi <- svi_divisional_nmtc_df %>% 
  filter(!is.na(housing_price_index10_log)) %>% filter(!is.na(housing_price_index20_log)) %>%
  select(GEOID_2010_trt, cbsa, housing_price_index10_log, nmtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "nmtc_flag",
         "HOUSE_PRICE_INDEX" = "housing_price_index10_log") 


nrow(nmtc_did10_div_hpi)
## [1] 2829
nmtc_did20_div_hpi <- svi_divisional_nmtc_df %>% 
  filter(!is.na(housing_price_index10_log)) %>% filter(!is.na(housing_price_index20_log)) %>%
  select(GEOID_2010_trt, cbsa, housing_price_index20_log, nmtc_flag) %>% 
  mutate(post = 1,
         year = 2020) %>%
  rename("treat" = "nmtc_flag",
         "HOUSE_PRICE_INDEX" = "housing_price_index20_log") 


nrow(nmtc_did20_div_hpi)
## [1] 2829
nmtc_diff_in_diff_div_hpi <- bind_rows(nmtc_did10_div_hpi, nmtc_did20_div_hpi)

nmtc_diff_in_diff_div_hpi <- nmtc_diff_in_diff_div_hpi %>% arrange(post, treat, GEOID_2010_trt)

nrow(nmtc_diff_in_diff_div_hpi)
## [1] 5658

NMTC Divisional Model

# SVI & Economic Models

m1_nmtc_div <- lm( SVI_FLAG_COUNT_SES ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_svi )

m2_nmtc_div <- lm( SVI_FLAG_COUNT_HHCHAR ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_svi )

m3_nmtc_div <- lm( SVI_FLAG_COUNT_REM ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_svi )

m4_nmtc_div <- lm( SVI_FLAG_COUNT_HOUSETRANSPT ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_svi )

m5_nmtc_div <- lm( SVI_FLAG_COUNT_OVERALL  ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_svi)

m6_nmtc_div <- lm( MEDIAN_INCOME ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_inc )

m7_nmtc_div <- lm( MEDIAN_HOME_VALUE ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_mhv )

m8_nmtc_div <- lm( HOUSE_PRICE_INDEX ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_hpi )

# Add all models to a list
models <- list(
  
  "SES" = m1_nmtc_div,
  "HHChar"  = m2_nmtc_div,
  "REM" = m3_nmtc_div,
  "HOUSETRANSPT" = m4_nmtc_div,
  "OVERALL" = m5_nmtc_div,
  "Median Income (USD, logged)" = m6_nmtc_div,
  "Median Home Value (USD, logged)" = m7_nmtc_div,
  "House Price Index (logged)" = m8_nmtc_div
)


# Display model results
modelsummary(models,  fmt = 2, stars = c('*' = .05, '**' = .01, '***' = .001), coef_omit = "cbsa", gof_omit = "IC|Log",
             notes = list('All models include metro-level fixed effects by core-based statistical area (cbsa).'),
             title = paste0("Differences-in-Differences Linear Regression Analysis of NMTC in ", census_division)) %>%
  group_tt(j = list("Social Vulnerability" = 2:6, "Economic Outcomes" = 7:9))
Differences-in-Differences Linear Regression Analysis of NMTC in Pacific Division
Social Vulnerability Economic Outcomes
SES HHChar REM HOUSETRANSPT OVERALL Median Income (USD, logged) Median Home Value (USD, logged) House Price Index (logged)
(Intercept) 1.10*** 1.88*** 0.05 1.15*** 4.18*** 10.13*** 11.89*** 5.12***
(0.31) (0.23) (0.09) (0.23) (0.62) (0.06) (0.09) (0.10)
treat 0.63*** 0.24*** 0.15*** 0.40*** 1.43*** -0.14*** -0.00 -0.04
(0.10) (0.07) (0.03) (0.07) (0.20) (0.02) (0.03) (0.04)
post -0.06 -0.09*** 0.00 -0.03 -0.17** 0.04*** -0.05*** 0.65***
(0.03) (0.02) (0.01) (0.02) (0.06) (0.01) (0.01) (0.01)
treat × post -0.05 -0.05 -0.01 -0.01 -0.12 0.06* 0.00 -0.02
(0.14) (0.10) (0.04) (0.10) (0.28) (0.03) (0.04) (0.05)
Num.Obs. 8240 8240 8240 8240 8240 8236 7916 5526
R2 0.270 0.112 0.301 0.060 0.233 0.182 0.417 0.488
R2 Adj. 0.264 0.104 0.295 0.052 0.227 0.175 0.412 0.481
RMSE 1.36 1.01 0.41 1.04 2.77 0.27 0.40 0.40
  • p < 0.05, ** p < 0.01, *** p < 0.001
All models include metro-level fixed effects by core-based statistical area (cbsa).

Differences-in-Differences Linear Regression Analysis of NMTC in Pacific Division

In the social vulnerability model, none of the categories returned statistically significant changes. In the economic conditions model, only median income was statistically significant. Median income was greater in tracts that received NMTC dollars compared to eligible tracts that didn’t. There was an increase of 6% (0.06*100) for each 1-unit increase.

The social vulnerability model results mean we can’t conclude there was a program impact in the Pacific Division. However, it’s important to note that the treatment group (counties that participated in NMTC) were more likely to have received more SVI flags across all four themes and overall.

Visualize Median Income

status <- c("NMTC Non-Participant", 
             "NMTC Participant Counterfactual", 
             "NMTC Participant", 
             "NMTC Non-Participant", 
             "NMTC Participant Counterfactual", 
             "NMTC Participant")
year <- c(2010, 
          2010, 
          2010, 
          2020, 
          2020, 
          2020)
outcome <- c(exp(m6_nmtc_div$coefficients[1]), 
           exp(m6_nmtc_div$coefficients[1])*exp(m6_nmtc_div$coefficients[2]), 
           exp(m6_nmtc_div$coefficients[1])*exp(m6_nmtc_div$coefficients[2]),
           exp(m6_nmtc_div$coefficients[1])*exp(m6_nmtc_div$coefficients[3]), 
           exp(m6_nmtc_div$coefficients[1])*exp(m6_nmtc_div$coefficients[2])*exp(m6_nmtc_div$coefficients[3]),
           exp(m6_nmtc_div$coefficients[1])*exp(m6_nmtc_div$coefficients[2])*exp(m6_nmtc_div$coefficients[3])*exp(m6_nmtc_div$coefficients[length(m6_nmtc_div$coefficients)])
)

svidiv_viz_medinc_nmtc <- data.frame(status, year, outcome)

### Note that instead of rounding like we did for SVI variables, we will be formatting our outcome as US dollars
svidiv_viz_medinc_nmtc$outcome_label <- scales::dollar_format()(svidiv_viz_medinc_nmtc$outcome)

svidiv_viz_medinc_nmtc
##                            status year  outcome outcome_label
## 1            NMTC Non-Participant 2010 24986.85    $24,986.85
## 2 NMTC Participant Counterfactual 2010 21799.86    $21,799.86
## 3                NMTC Participant 2010 21799.86    $21,799.86
## 4            NMTC Non-Participant 2020 26029.35    $26,029.35
## 5 NMTC Participant Counterfactual 2020 22709.39    $22,709.39
## 6                NMTC Participant 2020 24050.91    $24,050.91
slopegraph_plot(svidiv_viz_medinc_nmtc, "NMTC Participant", "NMTC Non-Participant", "Impact of NMTC Program on Average Median Income", paste0(census_division, " | 2010 - 2020"))

From the slopegraph, we can see that incomes in increased across the board. However, the gap between the participant counterfactual and the actual outcome is statistically significant. NMTC participants would be expected see median household income increase from $21,799.86 in 2010 to $22,709.39 in 2020. However, participation in NMTC increase the rate of growth, which saw the average median household income for participating counties rise to $24,050.91.

LIHTC Evaluation

Divisional SVI

# Create 2010 df, create post variable and set to 0, create year variable and set to 2010
lihtc_did10_div_svi <- svi_divisional_lihtc_df %>% 
  select(GEOID_2010_trt, cbsa, F_THEME1_10, F_THEME2_10, F_THEME3_10, F_THEME4_10, F_TOTAL_10, lihtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "lihtc_flag",
         "SVI_FLAG_COUNT_SES" = "F_THEME1_10",
         "SVI_FLAG_COUNT_HHCHAR" = "F_THEME2_10",
         "SVI_FLAG_COUNT_REM" = "F_THEME3_10",
         "SVI_FLAG_COUNT_HOUSETRANSPT" = "F_THEME4_10",
         "SVI_FLAG_COUNT_OVERALL" = "F_TOTAL_10") 

nrow(lihtc_did10_div_svi)
## [1] 584
# Create 2020 df, create post variable and set to 1, create year variable and set to 2020
lihtc_did20_div_svi <- svi_divisional_lihtc_df %>% 
  select(GEOID_2010_trt, cbsa, F_THEME1_20, F_THEME2_20, F_THEME3_20, F_THEME4_20, F_TOTAL_20, lihtc_flag) %>% 
  mutate(post = 1,
         year = 2020) %>%
  rename("treat" = "lihtc_flag",
         "SVI_FLAG_COUNT_SES" = "F_THEME1_20",
         "SVI_FLAG_COUNT_HHCHAR" = "F_THEME2_20",
         "SVI_FLAG_COUNT_REM" = "F_THEME3_20",
         "SVI_FLAG_COUNT_HOUSETRANSPT" = "F_THEME4_20",
         "SVI_FLAG_COUNT_OVERALL" = "F_TOTAL_20"
  )


nrow(lihtc_did20_div_svi)
## [1] 584
lihtc_diff_in_diff_div_svi <- bind_rows(lihtc_did10_div_svi, lihtc_did20_div_svi)

lihtc_diff_in_diff_div_svi <- lihtc_diff_in_diff_div_svi %>% arrange(post, treat, GEOID_2010_trt)

nrow(lihtc_diff_in_diff_div_svi)
## [1] 1168

Divisional Median Income

# Create 2010 df, create post variable and set to 0, create year variable and set to 2010, remove any tracts that don't have data for 2010 and 2019
lihtc_did10_div_inc <- svi_divisional_lihtc_df %>% 
  filter(!is.na(Median_Income_10adj_log)) %>% filter(!is.na(Median_Income_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Income_10adj_log, lihtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "lihtc_flag",
         "MEDIAN_INCOME" = "Median_Income_10adj_log") 


nrow(lihtc_did10_div_inc)
## [1] 583
# Create 2019 df, create post variable and set to 1, create year variable and set to 2019, remove any tracts that don't have data for 2010 and 2019
lihtc_did19_div_inc <- svi_divisional_lihtc_df %>% 
  filter(!is.na(Median_Income_10adj_log)) %>% filter(!is.na(Median_Income_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Income_19_log, lihtc_flag) %>% 
  mutate(post = 1,
         year = 2019) %>%
  rename("treat" = "lihtc_flag",
         "MEDIAN_INCOME" = "Median_Income_19_log") 


nrow(lihtc_did19_div_inc)
## [1] 583
lihtc_diff_in_diff_div_inc <- bind_rows(lihtc_did10_div_inc, lihtc_did19_div_inc)

lihtc_diff_in_diff_div_inc <- lihtc_diff_in_diff_div_inc %>% arrange(post, treat, GEOID_2010_trt)

nrow(lihtc_diff_in_diff_div_inc)
## [1] 1166

Divisional Median Home Value

lihtc_did10_div_mhv <- svi_divisional_lihtc_df %>% 
  filter(!is.na(Median_Home_Value_10adj_log)) %>% filter(!is.na(Median_Home_Value_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Home_Value_10adj_log, lihtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "lihtc_flag",
         "MEDIAN_HOME_VALUE" = "Median_Home_Value_10adj_log") 


nrow(lihtc_did10_div_mhv)
## [1] 543
lihtc_did19_div_mhv <- svi_divisional_lihtc_df %>% 
  filter(!is.na(Median_Home_Value_10adj_log)) %>% filter(!is.na(Median_Home_Value_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Home_Value_19_log, lihtc_flag) %>% 
  mutate(post = 1,
         year = 2019) %>%
  rename("treat" = "lihtc_flag",
         "MEDIAN_HOME_VALUE" = "Median_Home_Value_19_log") 


nrow(lihtc_did19_div_mhv)
## [1] 543
lihtc_diff_in_diff_div_mhv <- bind_rows(lihtc_did10_div_mhv, lihtc_did19_div_mhv)

lihtc_diff_in_diff_div_mhv <- lihtc_diff_in_diff_div_mhv %>% arrange(post, treat, GEOID_2010_trt)

nrow(lihtc_diff_in_diff_div_mhv)
## [1] 1086

Divisional House Price Index

lihtc_did10_div_hpi <- svi_divisional_lihtc_df %>% 
  filter(!is.na(housing_price_index10_log)) %>% filter(!is.na(housing_price_index20_log)) %>%
  select(GEOID_2010_trt, cbsa, housing_price_index10_log, lihtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "lihtc_flag",
         "HOUSE_PRICE_INDEX" = "housing_price_index10_log") 


nrow(lihtc_did10_div_hpi)
## [1] 310
lihtc_did20_div_hpi <- svi_divisional_lihtc_df %>% 
  filter(!is.na(housing_price_index10_log)) %>% filter(!is.na(housing_price_index20_log)) %>%
  select(GEOID_2010_trt, cbsa, housing_price_index20_log, lihtc_flag) %>% 
  mutate(post = 1,
         year = 2020) %>%
  rename("treat" = "lihtc_flag",
         "HOUSE_PRICE_INDEX" = "housing_price_index20_log") 


nrow(lihtc_did20_div_hpi)
## [1] 310
lihtc_diff_in_diff_div_hpi <- bind_rows(lihtc_did10_div_hpi, lihtc_did20_div_hpi)

lihtc_diff_in_diff_div_hpi <- lihtc_diff_in_diff_div_hpi %>% arrange(post, treat, GEOID_2010_trt)

nrow(lihtc_diff_in_diff_div_hpi)
## [1] 620

LIHTC Divisional Model

# SVI & Economic Models

m1_lihtc_div <- lm( SVI_FLAG_COUNT_SES ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_svi )

m2_lihtc_div <- lm( SVI_FLAG_COUNT_HHCHAR ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_svi )

m3_lihtc_div <- lm( SVI_FLAG_COUNT_REM ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_svi )

m4_lihtc_div <- lm( SVI_FLAG_COUNT_HOUSETRANSPT ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_svi )

m5_lihtc_div <- lm( SVI_FLAG_COUNT_OVERALL  ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_svi)

m6_lihtc_div <- lm( MEDIAN_INCOME ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_inc )

m7_lihtc_div <- lm( MEDIAN_HOME_VALUE ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_mhv )

m8_lihtc_div <- lm( HOUSE_PRICE_INDEX ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_hpi )

# Add all models to a list
models <- list(
  
  "SES" = m1_lihtc_div,
  "HHChar"  = m2_lihtc_div,
  "REM" = m3_lihtc_div,
  "HOUSETRANSPT" = m4_lihtc_div,
  "OVERALL" = m5_lihtc_div,
  "Median Income (USD, logged)" = m6_lihtc_div,
  "Median Home Value (USD, logged)" = m7_lihtc_div,
  "House Price Index (logged)" = m8_lihtc_div
)


# Display model results
modelsummary(models,  fmt = 2, stars = c('*' = .05, '**' = .01, '***' = .001), coef_omit = "cbsa", gof_omit = "IC|Log",
             notes = list('All models include metro-level fixed effects by core-based statistical area (cbsa).'),
             title = paste0("Differences-in-Differences Linear Regression Analysis of LIHTC in ", census_division)) %>%
  group_tt(j = list("Social Vulnerability" = 2:6, "Economic Outcomes" = 7:9))
Differences-in-Differences Linear Regression Analysis of LIHTC in Pacific Division
Social Vulnerability Economic Outcomes
SES HHChar REM HOUSETRANSPT OVERALL Median Income (USD, logged) Median Home Value (USD, logged) House Price Index (logged)
(Intercept) 1.59 2.50*** -0.02 2.99*** 7.05*** 9.86*** 11.68*** 4.83***
(0.81) (0.69) (0.27) (0.68) (1.64) (0.21) (0.35) (0.27)
treat 0.01 0.13 0.03 0.04 0.21 -0.02 0.02 0.00
(0.12) (0.10) (0.04) (0.10) (0.24) (0.03) (0.05) (0.05)
post -0.20** -0.19** -0.03 -0.17** -0.59*** 0.07*** -0.06 0.74***
(0.08) (0.06) (0.03) (0.06) (0.15) (0.02) (0.03) (0.03)
treat × post 0.01 -0.05 0.01 0.10 0.07 0.02 0.00 -0.05
(0.17) (0.14) (0.06) (0.14) (0.34) (0.04) (0.07) (0.08)
Num.Obs. 1146 1146 1146 1146 1146 1146 1066 618
R2 0.241 0.213 0.334 0.062 0.266 0.228 0.350 0.547
R2 Adj. 0.217 0.188 0.313 0.033 0.243 0.203 0.328 0.523
RMSE 1.12 0.95 0.38 0.94 2.26 0.30 0.48 0.37
  • p < 0.05, ** p < 0.01, *** p < 0.001
All models include metro-level fixed effects by core-based statistical area (cbsa).

Differences-in-Differences Linear Regression Analysis of LIHTC in Pacific Division

Neither of the diff-in-diff models return statistically significant changes for LIHTC participation. We can’t conclude that the program had a measurable impact, but this study alone is not evidence enough to disprove potential effects. Additional research is needed.