Introduction

The goal of this analysis is to estimate the causal impact of the Low-Income Housing Tax Credit (LIHTC) and the New Markets Tax Credit (NMTC) on neighborhood outcomes by using a differences-in-differences (DiD) framework. A DiD model compares changes over time in treated units (census tracts that received LIHTC or NMTC funding) versus control units (non-funded tracts), allowing us to net out both time-invariant tract characteristics and common temporal shocks.

Diff-in-Diff models

For our analysis of the effectiveness of the New Markets Tax Credit (NMTC) and Low Income Housing Tax Credit (LIHTC) as a tool for community revitalization and the reduction of social vulnerability in neighborhoods across the Middle Atlantic Division, we will employ a Diff-In-Diff model of linear regression.

Diff-In-Diff models are a statistical technique that allows us to analyze the differences in differences of changes across time periods to determine whether our program intervention resulted in an additional increase or decrease beyond what we would expect following general trends in similar controls.

Dependent Variables: SVI Variables, House Price Index, Median Home Values, and Median Income

We model four SVI themes—socioeconomic status (SES), household characteristics (HHCHAR), minority status & language (REM), and housing & transportation (HOUSETRANSPT)—plus the overall SVI flag count. Economically, we include log-transformed median household income, log median home value, and log house price index, each measured for 2010 (inflation-adjusted) and 2020.

Independent Variables: NMTC and LIHTC Data

Our key independent variables are:

  1. treat: a binary indicator for tract participation in NMTC (or LIHTC) funding,

  2. post: a binary indicator for the post-treatment period (2020), and

3.treat × post: the interaction term capturing the DiD treatment effect. We also include CBSA fixed effects to control for time-invariant metro characteristics.

Library

# Load packages
library(here)         # relative filepaths for reproducibility
library(rio)          # read excel file from URL
library(tidyverse)    # data wrangling
library(stringi)      # string data wrangling
library(tidycensus)   # US census data
library(ggplot2)      # data visualization
library(kableExtra)   # table formatting
library(scales)       # palette and number formatting
library(unhcrthemes)  # data visualization themes
library(ggrepel)      # data visualization formatting to avoid overlapping
library(rcompanion)   # data visualization of variable distribution
library(ggpubr)       # data visualization of variable distribution
library(moments)      # measures of skewness and kurtosis
library(tinytable)    # format regression tables
library(modelsummary) # format regression tables

Load Functions

import::here( "fips_census_regions",
              "load_svi_data",
              "merge_svi_data",
              "census_division",
              "slopegraph_plot",
              "census_pull",
             # notice the use of here::here() that points to the .R file
             # where all these R objects are created
             .from = here::here("analysis/project_data_steps_gregorio.R"),
             .character_only = TRUE)
# Load API key, assign to TidyCensus Package
source(here::here("analysis/password.R"))
census_api_key(census_api_key)
## To install your API key for use in future sessions, run this function with `install = TRUE`.

Data

# Load NMTC AND LIHTC data sets

svi_divisional_nmtc <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_divisional_nmtc.rds")))

svi_national_nmtc <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_national_nmtc.rds")))

svi_divisional_lihtc <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_divisional_lihtc.rds")))

svi_national_lihtc <- readRDS(here::here(paste0("data/wrangling/", str_replace_all(census_division, " ", "_"), "_svi_national_lihtc.rds")))

House Price Index Data

hpi_df <- read.csv("https://r-class.github.io/paf-515-course-materials/data/raw/HPI/HPI_AT_BDL_tract.csv")

hpi_df_10_20 <- hpi_df %>% 
  mutate(GEOID10 = str_pad(tract, 11, "left", pad=0)) %>% 
  filter(year %in% c(2010, 2020))  %>%
 select(GEOID10, state_abbr, year, hpi) %>%
  pivot_wider(names_from = year, values_from = hpi) %>%
  mutate(housing_price_index10 = `2010`,
         housing_price_index20 = `2020`) %>%
  select(GEOID10, state_abbr, housing_price_index10, housing_price_index20)

# View data
hpi_df_10_20 %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID10 state_abbr housing_price_index10 housing_price_index20
01001020100 AL 132.35 152.78
01001020200 AL 123.78 123.37
01001020300 AL 158.57 167.01
01001020400 AL 165.11 179.60
01001020501 AL 172.55 180.96
01001020502 AL 158.75 164.25
# Drop state_abbr column for joining
hpi_df_10_20 <- hpi_df_10_20 %>% select(-state_abbr)

CBSA Crosswalk Data

msa_csa_crosswalk <- rio::import("https://r-class.github.io/paf-515-course-materials/data/raw/CSA_MSA_Crosswalk/qcew-county-msa-csa-crosswalk.xlsx", which=4)

msa_csa_crosswalk <- msa_csa_crosswalk %>% 
  mutate(county_fips = str_pad(`County Code`, 5, "left", pad=0),
         cbsa = coalesce(`CSA Title`, `MSA Title`),
         cbsa_code = coalesce(`CSA Code`, `MSA Code`),
         county_title = `County Title`)  %>% 
  select(county_fips, county_title, cbsa, cbsa_code)

msa_csa_crosswalk %>% head() %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
county_fips county_title cbsa cbsa_code
01001 Autauga County, Alabama Montgomery-Alexander City, AL CSA CS388
01003 Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01005 Barbour County, Alabama Eufaula, AL-GA MicroSA C2164
01007 Bibb County, Alabama Birmingham-Hoover-Cullman, AL CSA CS142
01009 Blount County, Alabama Birmingham-Hoover-Cullman, AL CSA CS142
01015 Calhoun County, Alabama Anniston-Oxford, AL MSA C1150

Census Data

states <- list(svi_national_nmtc$state %>% unique())
states 
## [[1]]
##  [1] "AL" "AK" "AZ" "AR" "CA" "CO" "CT" "DE" "DC" "FL" "GA" "HI" "ID" "IL" "IN"
## [16] "IA" "KS" "KY" "LA" "ME" "MD" "MA" "MI" "MN" "MS" "MO" "MT" "NE" "NV" "NH"
## [31] "NJ" "NM" "NY" "NC" "ND" "OH" "OK" "OR" "PA" "RI" "SC" "SD" "TN" "TX" "UT"
## [46] "VT" "VA" "WA" "WV" "WI" "WY"
census_pull10 <- lapply(states, census_pull, yr = 2010)

census_pull10_df <- census_pull10[[1]] %>%  
  # Drop margin of error column
  select(-moe) %>%
  # Add suffix to variable names
  mutate(variable = paste0(variable, "_10")) %>%
  # Pivot data frame
  pivot_wider(
    names_from = variable,
    values_from = c(estimate)
  )

census_pull10_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID NAME Median_Income_10 Median_Home_Value_10
01001020100 Census Tract 201, Autauga County, Alabama 31769 120700
01001020200 Census Tract 202, Autauga County, Alabama 19437 138500
01001020300 Census Tract 203, Autauga County, Alabama 24146 111300
01001020400 Census Tract 204, Autauga County, Alabama 27735 126300
01001020500 Census Tract 205, Autauga County, Alabama 35517 173000
01001020600 Census Tract 206, Autauga County, Alabama 24597 110700
01001020700 Census Tract 207, Autauga County, Alabama 22114 93800
01001020801 Census Tract 208.01, Autauga County, Alabama 30841 258000
01001020802 Census Tract 208.02, Autauga County, Alabama 29006 145100
01001020900 Census Tract 209, Autauga County, Alabama 24841 108000
census_pull19 <- lapply(states, census_pull, yr = 2019)

census_pull19_df <- census_pull19[[1]] %>% 
  # Select columns
  select(GEOID, NAME, variable, estimate, moe) %>% 
  # Create individual FIPS columns for state, county, and tract
  mutate(FIPS_st = substr(GEOID, 1, 2),
         FIPS_county = substr(GEOID, 3, 5),
         FIPS_tract = substr(GEOID, 6, 11)) %>%
# Los Angeles, CA Census Tract fixes
                      mutate(FIPS_tract2 = if_else((FIPS_county == "037" & FIPS_st == "06" & FIPS_tract == "137000"), "930401", FIPS_tract )) %>%
# Pima County, AZ Census Tract fixes
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "002704"), "002701", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "002906"), "002903", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "004118"), "410501", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "004121"), "410502", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "004125"), "410503", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "005200"), "470400", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "019" & FIPS_st == "04" & FIPS_tract == "005300"), "470500", FIPS_tract2 )) %>%
# Madison County, NY Census Tract fixes
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030101"), "940101", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030102"), "940102", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030103"), "940103", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030200"), "940200", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030300"), "940300", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030401"), "940401", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030403"), "940403", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030600"), "940600", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "053" & FIPS_st == "36" & FIPS_tract == "030402"), "940700", FIPS_tract2 )) %>%
# Oneida County, NY Census Tract fixes
                      mutate(FIPS_tract2 = if_else((FIPS_county == "065" & FIPS_st == "36" & FIPS_tract == "024800"), "940000", FIPS_tract2 )) %>% 
                      mutate(FIPS_tract2 = if_else((FIPS_county == "065" & FIPS_st == "36" & FIPS_tract == "024700"), "940100", FIPS_tract2 )) %>%
                      mutate(FIPS_tract2 = if_else((FIPS_county == "065" & FIPS_st == "36" & FIPS_tract == "024900"), "940200", FIPS_tract2 )) %>%  
                      # Move columns in data set
                      relocate(c(FIPS_st, FIPS_county, FIPS_tract, FIPS_tract2),.after = GEOID) %>%
                      # Create new GEOID column
                      mutate(GEOID = paste0(FIPS_st, FIPS_county, FIPS_tract2)) %>% 
                      # Drop newly created FIPS columns and margin of error
                      select(-FIPS_st, -FIPS_county, -FIPS_tract, -FIPS_tract2, -moe) %>% 
                      # Add suffix
                      mutate(variable = paste0(variable, "_19")) %>%
                      # Pivot data set
                      pivot_wider(
                        names_from = variable,
                        values_from = c(estimate)
                      ) 

census_pull19_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID NAME Median_Income_19 Median_Home_Value_19
01001020100 Census Tract 201, Autauga County, Alabama 25970 136100
01001020200 Census Tract 202, Autauga County, Alabama 20154 90500
01001020300 Census Tract 203, Autauga County, Alabama 27383 122600
01001020400 Census Tract 204, Autauga County, Alabama 34620 152700
01001020500 Census Tract 205, Autauga County, Alabama 41178 186900
01001020600 Census Tract 206, Autauga County, Alabama 21146 103600
01001020700 Census Tract 207, Autauga County, Alabama 20934 82400
01001020801 Census Tract 208.01, Autauga County, Alabama 31667 322900
01001020802 Census Tract 208.02, Autauga County, Alabama 33086 171500
01001020900 Census Tract 209, Autauga County, Alabama 32677 156900
inflation_adj = 1.16

# Join 2010 and 2019 Median Income and Home Value Data
census_pull_df <- left_join(census_pull10_df, census_pull19_df[c("GEOID", "Median_Income_19", "Median_Home_Value_19")], join_by("GEOID" == "GEOID"))

# Create new inflation adjusted columns for 2010 median income and median home value, find changes over time
census_pull_df <- census_pull_df %>% 
                   mutate(Median_Income_10adj = Median_Income_10*inflation_adj,
                          Median_Home_Value_10adj = Median_Home_Value_10*inflation_adj,
                          Median_Income_Change = Median_Income_19 - Median_Income_10adj,
                          Median_Income_Change_pct = (Median_Income_19 - Median_Income_10adj)/Median_Income_10adj,
                          Median_Home_Value_Change = Median_Home_Value_19 - Median_Home_Value_10adj,
                          Median_Home_Value_Change_pct = (Median_Home_Value_19 - Median_Home_Value_10adj)/Median_Home_Value_10adj)

# View data
census_pull_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID NAME Median_Income_10 Median_Home_Value_10 Median_Income_19 Median_Home_Value_19 Median_Income_10adj Median_Home_Value_10adj Median_Income_Change Median_Income_Change_pct Median_Home_Value_Change Median_Home_Value_Change_pct
01001020100 Census Tract 201, Autauga County, Alabama 31769 120700 25970 136100 36852.04 140012 -10882.04 -0.2952900 -3912 -0.0279405
01001020200 Census Tract 202, Autauga County, Alabama 19437 138500 20154 90500 22546.92 160660 -2392.92 -0.1061307 -70160 -0.4366986
01001020300 Census Tract 203, Autauga County, Alabama 24146 111300 27383 122600 28009.36 129108 -626.36 -0.0223625 -6508 -0.0504074
01001020400 Census Tract 204, Autauga County, Alabama 27735 126300 34620 152700 32172.60 146508 2447.40 0.0760709 6192 0.0422639
01001020500 Census Tract 205, Autauga County, Alabama 35517 173000 41178 186900 41199.72 200680 -21.72 -0.0005272 -13780 -0.0686665
01001020600 Census Tract 206, Autauga County, Alabama 24597 110700 21146 103600 28532.52 128412 -7386.52 -0.2588807 -24812 -0.1932218
01001020700 Census Tract 207, Autauga County, Alabama 22114 93800 20934 82400 25652.24 108808 -4718.24 -0.1839309 -26408 -0.2427027
01001020801 Census Tract 208.01, Autauga County, Alabama 30841 258000 31667 322900 35775.56 299280 -4108.56 -0.1148426 23620 0.0789227
01001020802 Census Tract 208.02, Autauga County, Alabama 29006 145100 33086 171500 33646.96 168316 -560.96 -0.0166719 3184 0.0189168
01001020900 Census Tract 209, Autauga County, Alabama 24841 108000 32677 156900 28815.56 125280 3861.44 0.1340054 31620 0.2523946

NMTC Data

svi_divisional_nmtc_df0 <- left_join(svi_divisional_nmtc, census_pull_df, join_by("GEOID_2010_trt" == "GEOID"))

svi_divisional_nmtc_df1 <- left_join(svi_divisional_nmtc_df0, hpi_df_10_20, join_by("GEOID_2010_trt" == "GEOID10")) %>%
                          unite("county_fips", FIPS_st, FIPS_county, sep = "") 

svi_divisional_nmtc_df <- left_join(svi_divisional_nmtc_df1, msa_csa_crosswalk, join_by("county_fips" == "county_fips"))

svi_divisional_nmtc_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt county_fips FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 nmtc_eligibility pre10_nmtc_project_cnt pre10_nmtc_dollars pre10_nmtc_dollars_formatted post10_nmtc_project_cnt post10_nmtc_dollars post10_nmtc_dollars_formatted nmtc_flag NAME Median_Income_10 Median_Home_Value_10 Median_Income_19 Median_Home_Value_19 Median_Income_10adj Median_Home_Value_10adj Median_Income_Change Median_Income_Change_pct Median_Home_Value_Change Median_Home_Value_Change_pct housing_price_index10 housing_price_index20 county_title cbsa cbsa_code
19003950200 19003 950200 IA Iowa Adams County 2 Midwest Region 4 West North Central Division 2382 1214 1074 674 2324 29.00172 0.7484 0 43 1148 3.745645 0.2825 0 142 782 18.15857 0.2646 0 107 292 36.64384 0.45600 0 249 1074 23.18436 0.3296 0 276 1794 15.384615 0.7587 1 194 2184 8.882784 0.4311 0 554 23.257767 0.9211 1 442 18.55584 0.1370 0 334 1742 19.17336 0.7794 1 81 583 13.893653 0.56290 0 0 2296 0.0000000 0.1215 0 89 2382 3.736356 0.2193 0 1214 32 2.6359143 0.44560 0 59 4.8599671 0.6514 0 27 1074 2.5139665 0.7799 1 72 1074 6.703911 0.6702 0 183 2382 7.682620 0.9039 1 2.5503 0.5413 1 2.52190 0.5177 2 0.2193 0.2184 0 3.45100 0.90270 2 8.74250 0.6273 5 2017 1176 923 373 1939 19.23672 0.5455 0 43 965 4.455959 0.6531 0 115 708 16.242938 0.464400 0 30 215 13.95349 0.07616 0 145 923 15.70964 0.1595 0 123 1504 8.178192 0.5864 0 64 1957 3.270312 0.23380 0 492 24.392662 0.87730 1 399 19.78185 0.2529 0 276 1558.000 17.715019 0.66950 0 44 526.0000 8.365019 0.2549 0 5 1932 0.2587992 0.4007 0 101 2017.000 5.007437 0.15670 0 1176 16 1.3605442 0.3160 0 31 2.6360544 0.5846 0 8 923 0.8667389 0.41620 0 60 923.0000 6.500542 0.6597 0 130 2017 6.4452157 0.9140 1 2.17830 0.4184 0 2.45530 0.4673 1 0.15670 0.15610 0 2.89050 0.6683 1 7.68080 0.4534 2 Yes 0 0 \$0 0 0 \$0 0 Census Tract 9502, Adams County, Iowa 19847 75700 30898 77200 23022.52 87812 7875.48 0.3420772 -10612 -0.1208491 113.33 109.40 NA NA NA
19005960500 19005 960500 IA Iowa Allamakee County 2 Midwest Region 4 West North Central Division 3381 1286 1199 761 3381 22.50813 0.5897 0 45 1699 2.648617 0.1433 0 150 915 16.39344 0.1774 0 141 284 49.64789 0.75450 1 291 1199 24.27023 0.3840 0 383 2152 17.797398 0.8235 1 662 3327 19.897806 0.8851 1 416 12.304052 0.4070 0 1057 31.26294 0.9039 1 267 2328 11.46907 0.2881 0 94 916 10.262009 0.37050 0 319 2923 10.9134451 0.9675 1 603 3381 17.834960 0.7106 0 1286 27 2.0995334 0.40680 0 29 2.2550544 0.5319 0 83 1199 6.9224354 0.9591 1 74 1199 6.171810 0.6369 0 0 3381 0.000000 0.3161 0 2.8256 0.6221 2 2.93700 0.7345 2 0.7106 0.7077 0 2.85080 0.66920 1 9.32400 0.7048 5 3461 1279 1178 775 3403 22.77402 0.6463 0 46 1541 2.985075 0.4416 0 76 817 9.302326 0.078740 0 92 361 25.48476 0.24980 0 168 1178 14.26146 0.1033 0 370 1997 18.527792 0.9109 1 554 3412 16.236811 0.91580 1 435 12.568622 0.24880 0 1231 35.56775 0.9808 1 162 2181.000 7.427785 0.06615 0 112 895.0000 12.513967 0.4746 0 239 3168 7.5441919 0.9470 1 1091 3461.000 31.522681 0.79910 1 1279 36 2.8146990 0.4226 0 41 3.2056294 0.6163 0 62 1178 5.2631579 0.91210 1 96 1178.0000 8.149406 0.7489 0 49 3461 1.4157758 0.6208 0 3.01790 0.6696 2 2.71735 0.6274 2 0.79910 0.79620 1 3.32070 0.8478 1 9.85505 0.7714 6 Yes 0 0 \$0 0 0 \$0 0 Census Tract 9605, Allamakee County, Iowa 23796 113700 35302 116300 27603.36 131892 7698.64 0.2789023 -15592 -0.1182179 119.78 133.60 NA NA NA
19007950100 19007 950100 IA Iowa Appanoose County 2 Midwest Region 4 West North Central Division 2776 1358 1168 712 2772 25.68543 0.6800 0 108 1336 8.083832 0.7380 0 191 941 20.29756 0.3858 0 93 227 40.96916 0.56620 0 284 1168 24.31507 0.3863 0 181 1912 9.466527 0.4683 0 245 2826 8.669498 0.4141 0 540 19.452450 0.8079 1 675 24.31556 0.5162 0 338 2211 15.28720 0.5533 0 78 809 9.641533 0.33150 0 0 2570 0.0000000 0.1215 0 120 2776 4.322767 0.2617 0 1358 1 0.0736377 0.19570 0 145 10.6774669 0.8254 1 9 1168 0.7705479 0.4496 0 58 1168 4.965753 0.5536 0 0 2776 0.000000 0.3161 0 2.6867 0.5858 0 2.33040 0.4045 1 0.2617 0.2606 0 2.34040 0.40590 1 7.61920 0.4607 2 2403 1209 927 650 2397 27.11723 0.7483 0 90 1141 7.887818 0.8871 1 123 683 18.008785 0.592400 0 61 244 25.00000 0.24130 0 184 927 19.84898 0.3689 0 111 1672 6.638756 0.4740 0 198 2396 8.263773 0.65480 0 539 22.430295 0.80780 1 556 23.13774 0.5076 0 368 1841.304 19.985831 0.78120 1 41 630.3641 6.504177 0.1539 0 0 2290 0.0000000 0.1327 0 72 2402.541 2.996827 0.05070 0 1209 3 0.2481390 0.2000 0 95 7.8577337 0.7914 1 2 927 0.2157497 0.22670 0 41 926.5641 4.424950 0.5019 0 1 2403 0.0416146 0.2867 0 3.13310 0.7005 1 2.38320 0.4254 2 0.05070 0.05052 0 2.00670 0.2648 1 7.57370 0.4380 4 Yes 0 0 \$0 0 0 \$0 0 Census Tract 9501, Appanoose County, Iowa 19902 70800 27813 102200 23086.32 82128 4726.68 0.2047394 20072 0.2443990 NA NA NA NA NA
19007950300 19007 950300 IA Iowa Appanoose County 2 Midwest Region 4 West North Central Division 3199 1599 1418 1150 3124 36.81178 0.8559 1 275 1466 18.758527 0.9652 1 205 745 27.51678 0.7281 0 333 673 49.47994 0.75140 1 538 1418 37.94076 0.8374 1 212 2171 9.765085 0.4892 0 324 2810 11.530249 0.5992 0 691 21.600500 0.8824 1 833 26.03939 0.6525 0 460 2217 20.74876 0.8401 1 112 761 14.717477 0.59220 0 0 2884 0.0000000 0.1215 0 164 3199 5.126602 0.3089 0 1599 178 11.1319575 0.72650 0 116 7.2545341 0.7337 0 57 1418 4.0197461 0.8884 1 221 1418 15.585332 0.9104 1 75 3199 2.344483 0.7538 1 3.7469 0.8295 3 3.08870 0.7966 2 0.3089 0.3077 0 4.01280 0.98410 3 11.15730 0.8880 8 3122 1799 1405 1115 3052 36.53342 0.8801 1 76 1237 6.143897 0.8057 1 142 795 17.861635 0.584000 0 277 610 45.40984 0.71380 0 419 1405 29.82206 0.7707 1 284 2338 12.147134 0.7814 1 187 3079 6.073400 0.50730 0 789 25.272261 0.90200 1 586 18.77002 0.1960 0 659 2495.696 26.405465 0.93540 1 85 786.6359 10.805508 0.3934 0 0 2957 0.0000000 0.1327 0 160 3122.459 5.124166 0.16330 0 1799 161 8.9494163 0.6528 0 100 5.5586437 0.7192 0 24 1405 1.7081851 0.60050 0 172 1405.4359 12.238196 0.8683 1 70 3122 2.2421525 0.7311 0 3.74520 0.8420 4 2.55950 0.5311 2 0.16330 0.16270 0 3.57190 0.9203 1 10.03990 0.7934 7 Yes 0 0 \$0 0 0 \$0 0 Census Tract 9503, Appanoose County, Iowa 16377 63300 20217 69700 18997.32 73428 1219.68 0.0642027 -3728 -0.0507708 105.81 130.01 NA NA NA
19009070300 19009 070300 IA Iowa Audubon County 2 Midwest Region 4 West North Central Division 1746 879 771 434 1663 26.09741 0.6868 0 21 791 2.654867 0.1445 0 129 629 20.50874 0.3979 0 23 142 16.19718 0.08948 0 152 771 19.71466 0.1759 0 206 1298 15.870570 0.7742 1 228 1631 13.979154 0.7148 0 496 28.407789 0.9812 1 327 18.72852 0.1440 0 243 1334 18.21589 0.7345 0 12 502 2.390438 0.02169 0 6 1666 0.3601441 0.4190 0 49 1746 2.806415 0.1459 0 879 6 0.6825939 0.27980 0 8 0.9101251 0.4325 0 0 771 0.0000000 0.1372 0 60 771 7.782101 0.7244 0 79 1746 4.524628 0.8415 1 2.4962 0.5254 1 2.30039 0.3869 1 0.1459 0.1453 0 2.41540 0.44410 1 7.35789 0.4210 3 1699 831 775 350 1638 21.36752 0.6109 0 14 850 1.647059 0.1920 0 89 646 13.777090 0.304100 0 29 129 22.48062 0.19170 0 118 775 15.22581 0.1388 0 98 1250 7.840000 0.5648 0 57 1650 3.454546 0.25530 0 410 24.131842 0.86800 1 374 22.01295 0.4174 0 177 1276.000 13.871473 0.41630 0 47 474.0000 9.915612 0.3430 0 0 1536 0.0000000 0.1327 0 30 1699.000 1.765745 0.01595 0 831 5 0.6016847 0.2454 0 8 0.9626955 0.4577 0 7 775 0.9032258 0.42690 0 22 775.0000 2.838710 0.3478 0 49 1699 2.8840494 0.7833 1 1.76180 0.2850 0 2.17740 0.3132 1 0.01595 0.01589 0 2.26110 0.3720 1 6.21625 0.2314 2 Yes 0 0 \$0 0 0 \$0 0 Census Tract 703, Audubon County, Iowa 20712 72100 29214 69900 24025.92 83636 5188.08 0.2159368 -13736 -0.1642355 NA NA NA NA NA
19011960300 19011 960300 IA Iowa Benton County 2 Midwest Region 4 West North Central Division 5438 2510 2241 1046 5304 19.72097 0.5037 0 210 2471 8.498584 0.7671 1 354 1547 22.88300 0.5244 0 230 694 33.14121 0.37500 0 584 2241 26.05979 0.4688 0 234 3663 6.388206 0.2765 0 381 5307 7.179197 0.3060 0 984 18.094888 0.7456 0 1374 25.26664 0.5858 0 864 3914 22.07460 0.8760 1 311 1569 19.821542 0.74650 0 52 5065 1.0266535 0.6568 0 335 5438 6.160353 0.3608 0 2510 63 2.5099602 0.43720 0 114 4.5418327 0.6392 0 32 2241 1.4279340 0.6175 0 109 2241 4.863900 0.5464 0 134 5438 2.464141 0.7593 1 2.3221 0.4725 1 3.61070 0.9427 1 0.3608 0.3593 0 2.99960 0.73360 1 9.29320 0.6995 3 5250 2525 2252 1029 5039 20.42072 0.5801 0 35 2481 1.410721 0.1483 0 445 1668 26.678657 0.918200 1 158 583 27.10120 0.28200 0 603 2251 26.78809 0.6840 0 318 3591 8.855472 0.6297 0 79 5103 1.548109 0.06672 0 1236 23.542857 0.84750 1 1184 22.55238 0.4596 0 806 3920.615 20.557999 0.80460 1 291 1387.9781 20.965749 0.7594 1 12 5078 0.2363135 0.3880 0 319 5250.100 6.076075 0.21120 0 2525 85 3.3663366 0.4532 0 0 0.0000000 0.1738 0 0 2252 0.0000000 0.09916 0 132 2251.6373 5.862401 0.6165 0 244 5250 4.6476190 0.8783 1 2.10882 0.3955 0 3.25910 0.8640 3 0.21120 0.21040 0 2.22096 0.3527 1 7.80008 0.4732 4 Yes 0 0 \$0 0 0 \$0 0 Census Tract 9603, Benton County, Iowa 24117 105600 26911 138900 27975.72 122496 -1064.72 -0.0380587 16404 0.1339146 195.52 231.04 Benton County, Iowa Cedar Rapids, IA MSA C1630
19011960700 19011 960700 IA Iowa Benton County 2 Midwest Region 4 West North Central Division 2741 1340 1267 662 2695 24.56401 0.6494 0 68 1282 5.304212 0.4819 0 200 847 23.61275 0.5620 0 132 420 31.42857 0.34020 0 332 1267 26.20363 0.4751 0 310 1904 16.281513 0.7862 1 323 2600 12.423077 0.6484 0 512 18.679314 0.7750 1 666 24.29770 0.5151 0 467 1996 23.39679 0.9051 1 98 697 14.060258 0.57030 0 34 2635 1.2903226 0.7095 0 103 2741 3.757753 0.2208 0 1340 32 2.3880597 0.42830 0 19 1.4179104 0.4793 0 0 1267 0.0000000 0.1372 0 99 1267 7.813733 0.7254 0 0 2741 0.000000 0.3161 0 3.0410 0.6787 1 3.47500 0.9175 2 0.2208 0.2199 0 2.08630 0.28970 0 8.82310 0.6382 3 2608 1301 1148 643 2549 25.22558 0.7120 0 39 1456 2.678571 0.3852 0 140 922 15.184382 0.396900 0 91 226 40.26549 0.59980 0 231 1148 20.12195 0.3811 0 171 1928 8.869295 0.6303 0 106 2561 4.139008 0.32710 0 566 21.702454 0.77170 1 501 19.21012 0.2190 0 268 2060.000 13.009709 0.35430 0 128 735.0000 17.414966 0.6650 0 0 2450 0.0000000 0.1327 0 125 2608.000 4.792945 0.14300 0 1301 41 3.1514220 0.4437 0 32 2.4596464 0.5734 0 8 1148 0.6968641 0.36600 0 69 1148.0000 6.010453 0.6266 0 47 2608 1.8021472 0.6781 0 2.43570 0.5041 0 2.14270 0.2969 1 0.14300 0.14250 0 2.68780 0.5729 0 7.40920 0.4129 1 Yes 0 0 \$0 0 0 \$0 0 Census Tract 9607, Benton County, Iowa 22139 84100 29909 86200 25681.24 97556 4227.76 0.1646244 -11356 -0.1164049 108.74 130.72 Benton County, Iowa Cedar Rapids, IA MSA C1630
19013000200 19013 000200 IA Iowa Black Hawk County 2 Midwest Region 4 West North Central Division 2874 1294 1037 1181 2874 41.09255 0.8912 1 87 1324 6.570997 0.6200 0 81 451 17.96009 0.2549 0 369 586 62.96928 0.92450 1 450 1037 43.39441 0.9097 1 338 1603 21.085465 0.8833 1 408 2762 14.771904 0.7454 0 181 6.297843 0.1024 0 931 32.39388 0.9280 1 235 1966 11.95320 0.3165 0 226 701 32.239658 0.91000 1 149 2522 5.9080095 0.9244 1 828 2874 28.810021 0.8332 1 1294 63 4.8686244 0.56180 0 15 1.1591963 0.4545 0 98 1037 9.4503375 0.9779 1 94 1037 9.064609 0.7762 1 0 2874 0.000000 0.3161 0 4.0496 0.8827 3 3.18130 0.8333 3 0.8332 0.8297 1 3.08650 0.77180 2 11.15060 0.8878 9 2833 1243 1057 958 2772 34.55988 0.8586 1 203 1513 13.417052 0.9757 1 17 334 5.089820 0.009533 0 230 723 31.81189 0.39200 0 247 1057 23.36802 0.5533 0 314 1493 21.031480 0.9364 1 314 2833 11.083657 0.78390 1 129 4.553477 0.02013 0 903 31.87434 0.9406 1 360 1930.000 18.652850 0.71890 0 181 609.0000 29.720854 0.8944 1 330 2613 12.6291619 0.9782 1 1679 2833.000 59.265796 0.92480 1 1243 145 11.6653258 0.7129 0 3 0.2413516 0.3601 0 45 1057 4.2573321 0.87560 1 143 1057.0000 13.528855 0.8890 1 0 2833 0.0000000 0.1414 0 4.10790 0.9041 4 3.55223 0.9381 3 0.92480 0.92150 1 2.97900 0.7065 2 11.56393 0.9330 10 Yes 0 0 \$0 0 0 \$0 0 Census Tract 2, Black Hawk County, Iowa 16659 77400 22277 82900 19324.44 89784 2952.56 0.1527889 -6884 -0.0766729 NA 126.91 Black Hawk County, Iowa Waterloo-Cedar Falls, IA MSA C4794
19013000300 19013 000300 IA Iowa Black Hawk County 2 Midwest Region 4 West North Central Division 2948 1583 1188 1355 2930 46.24573 0.9249 1 171 1263 13.539192 0.9202 1 134 392 34.18367 0.8977 1 526 796 66.08040 0.94740 1 660 1188 55.55556 0.9828 1 193 1634 11.811506 0.6034 0 487 2747 17.728431 0.8389 1 250 8.480326 0.1993 0 1005 34.09091 0.9540 1 760 1945 39.07455 0.9975 1 296 757 39.101717 0.94940 1 70 2543 2.7526543 0.8379 1 1044 2948 35.413840 0.8685 1 1583 198 12.5078964 0.75140 1 11 0.6948831 0.4045 0 16 1188 1.3468013 0.6023 0 205 1188 17.255892 0.9247 1 0 2948 0.000000 0.3161 0 4.2702 0.9156 4 3.93810 0.9830 4 0.8685 0.8649 1 2.99900 0.73320 2 12.07580 0.9531 11 3125 1623 1251 1544 3117 49.53481 0.9578 1 188 1388 13.544669 0.9764 1 53 312 16.987179 0.520600 0 647 939 68.90309 0.97910 1 700 1251 55.95524 0.9918 1 446 1876 23.773987 0.9582 1 274 3125 8.768000 0.68030 0 359 11.488000 0.20110 0 932 29.82400 0.8967 1 667 2193.000 30.414957 0.97450 1 284 682.0000 41.642229 0.9673 1 187 2691 6.9490896 0.9389 1 1763 3125.000 56.416000 0.91400 1 1623 315 19.4085028 0.8203 1 0 0.0000000 0.1738 0 88 1251 7.0343725 0.94680 1 313 1251.0000 25.019984 0.9713 1 39 3125 1.2480000 0.5930 0 4.56450 0.9675 4 3.97850 0.9890 4 0.91400 0.91070 1 3.50520 0.9056 3 12.96220 0.9871 12 Yes 0 0 \$0 0 0 \$0 0 Census Tract 3, Black Hawk County, Iowa 16462 76300 20954 74900 19095.92 88508 1858.08 0.0973025 -13608 -0.1537488 NA NA Black Hawk County, Iowa Waterloo-Cedar Falls, IA MSA C4794
19013000500 19013 000500 IA Iowa Black Hawk County 2 Midwest Region 4 West North Central Division 1918 653 653 349 1900 18.36842 0.4573 0 151 1240 12.177419 0.8947 1 128 492 26.01626 0.6722 0 93 161 57.76398 0.87590 1 221 653 33.84380 0.7474 0 292 1157 25.237684 0.9306 1 347 1809 19.181868 0.8703 1 134 6.986444 0.1315 0 466 24.29614 0.5143 0 252 1357 18.57038 0.7539 1 186 468 39.743590 0.95240 1 102 1832 5.5676856 0.9196 1 733 1918 38.216893 0.8788 1 653 0 0.0000000 0.09728 0 0 0.0000000 0.1716 0 0 653 0.0000000 0.1372 0 53 653 8.116386 0.7427 0 0 1918 0.000000 0.3161 0 3.9003 0.8577 3 3.27170 0.8649 3 0.8788 0.8751 1 1.46488 0.07947 0 9.51568 0.7256 7 1742 688 625 585 1678 34.86293 0.8624 1 117 906 12.913907 0.9730 1 67 328 20.426829 0.734200 0 136 297 45.79125 0.72160 0 203 625 32.48000 0.8277 1 192 959 20.020855 0.9280 1 132 1742 7.577497 0.61210 0 149 8.553387 0.09628 0 505 28.98967 0.8739 1 254 1237.000 20.533549 0.80360 1 122 357.0000 34.173670 0.9306 1 0 1621 0.0000000 0.1327 0 829 1742.000 47.588978 0.88740 1 688 0 0.0000000 0.0847 0 0 0.0000000 0.1738 0 9 625 1.4400000 0.55030 0 64 625.0000 10.240000 0.8245 1 0 1742 0.0000000 0.1414 0 4.20320 0.9184 4 2.83708 0.6861 3 0.88740 0.88420 1 1.77470 0.1856 1 9.70238 0.7535 9 Yes 0 0 \$0 0 0 \$0 0 Census Tract 5, Black Hawk County, Iowa 21996 67000 21578 64700 25515.36 77720 -3937.36 -0.1543133 -13020 -0.1675244 NA NA Black Hawk County, Iowa Waterloo-Cedar Falls, IA MSA C4794
svi_national_nmtc_df0 <- left_join(svi_national_nmtc, census_pull_df, join_by("GEOID_2010_trt" == "GEOID"))

svi_national_nmtc_df1 <- left_join(svi_national_nmtc_df0, hpi_df_10_20, join_by("GEOID_2010_trt" == "GEOID10")) %>%
                          unite("county_fips", FIPS_st, FIPS_county, sep = "") 

svi_national_nmtc_df <- left_join(svi_national_nmtc_df1, msa_csa_crosswalk, join_by("county_fips" == "county_fips"))

svi_national_nmtc_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt county_fips FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 nmtc_eligibility pre10_nmtc_project_cnt pre10_nmtc_dollars pre10_nmtc_dollars_formatted post10_nmtc_project_cnt post10_nmtc_dollars post10_nmtc_dollars_formatted nmtc_flag NAME Median_Income_10 Median_Home_Value_10 Median_Income_19 Median_Home_Value_19 Median_Income_10adj Median_Home_Value_10adj Median_Income_Change Median_Income_Change_pct Median_Home_Value_Change Median_Home_Value_Change_pct housing_price_index10 housing_price_index20 county_title cbsa cbsa_code
01001020200 01001 020200 AL Alabama Autauga County 3 South Region 6 East South Central Division 2020 816 730 495 1992 24.84940 0.5954 0 68 834 8.153477 0.57540 0 49 439 11.16173 0.02067 0 105 291 36.08247 0.30190 0 154 730 21.09589 0.09312 0 339 1265 26.798419 0.8392 1 313 2012 15.55666 0.6000 0 204 10.09901 0.3419 0 597 29.55446 0.8192 1 359 1515 23.69637 0.8791 1 132 456 28.947368 0.8351 1 15 1890 0.7936508 0.40130 0 1243 2020 61.534653 0.77810 1 816 0 0.0000000 0.1224 0 34 4.1666667 0.6664 0 13 730 1.780822 0.5406 0 115 730 15.7534247 0.83820 1 0 2020 0.0000 0.3640 0 2.70312 0.5665 1 3.27660 0.8614 3 0.77810 0.7709 1 2.53160 0.5047 1 9.28942 0.6832 6 1757 720 573 384 1511 25.413633 0.6427 0 29 717 4.044630 0.41320 0 33 392 8.418367 0.03542 0 116 181 64.08840 0.9086 1 149 573 26.00349 0.40410 0 139 1313 10.586443 0.5601 0 91 1533 5.936073 0.4343 0 284 16.163916 0.5169 0 325 18.49744 0.28510 0 164 1208.000 13.576159 0.4127 0 42 359.0000 11.6991643 0.39980 0 0 1651 0.0000000 0.09479 0 1116 1757.000 63.5173591 0.759100 1 720 3 0.4166667 0.2470 0 5 0.6944444 0.5106 0 9 573 1.5706806 0.46880 0 57 573.000 9.947644 0.7317 0 212 1757 12.0660216 0.9549 1 2.45440 0.4888 0 1.70929 0.10250 0 0.759100 0.752700 1 2.91300 0.6862 1 7.835790 0.4802 2 Yes 0 0 \$0 0 0 \$0 0 Census Tract 202, Autauga County, Alabama 19437 138500 20154 90500 22546.92 160660 -2392.92 -0.1061307 -70160 -0.4366986 123.78 123.37 Autauga County, Alabama Montgomery-Alexander City, AL CSA CS388
01001020700 01001 020700 AL Alabama Autauga County 3 South Region 6 East South Central Division 2664 1254 1139 710 2664 26.65165 0.6328 0 29 1310 2.213741 0.05255 0 134 710 18.87324 0.13890 0 187 429 43.58974 0.47090 0 321 1139 28.18262 0.28130 0 396 1852 21.382289 0.7478 0 345 2878 11.98749 0.4459 0 389 14.60210 0.6417 0 599 22.48499 0.4007 0 510 2168 23.52399 0.8752 1 228 712 32.022472 0.8712 1 0 2480 0.0000000 0.09298 0 694 2664 26.051051 0.51380 0 1254 8 0.6379585 0.2931 0 460 36.6826156 0.9714 1 0 1139 0.000000 0.1238 0 125 1139 10.9745391 0.74770 0 0 2664 0.0000 0.3640 0 2.16035 0.4069 0 2.88178 0.6997 2 0.51380 0.5090 0 2.50000 0.4882 1 8.05593 0.5185 3 3562 1313 1248 1370 3528 38.832200 0.8512 1 128 1562 8.194622 0.79350 1 168 844 19.905213 0.44510 0 237 404 58.66337 0.8359 1 405 1248 32.45192 0.60420 0 396 2211 17.910448 0.7857 1 444 3547 12.517620 0.7758 1 355 9.966311 0.1800 0 954 26.78271 0.79230 1 629 2593.000 24.257617 0.8730 1 171 797.0000 21.4554580 0.71860 0 0 3211 0.0000000 0.09479 0 1009 3562.000 28.3267827 0.466800 0 1313 14 1.0662605 0.3165 0 443 33.7395278 0.9663 1 73 1248 5.8493590 0.82110 1 17 1248.000 1.362180 0.1554 0 112 3562 3.1443010 0.8514 1 3.81040 0.8569 4 2.65869 0.58470 2 0.466800 0.462900 0 3.11070 0.7714 3 10.046590 0.7851 9 Yes 0 0 \$0 0 0 \$0 0 Census Tract 207, Autauga County, Alabama 22114 93800 20934 82400 25652.24 108808 -4718.24 -0.1839309 -26408 -0.2427027 95.94 108.47 Autauga County, Alabama Montgomery-Alexander City, AL CSA CS388
01001021100 01001 021100 AL Alabama Autauga County 3 South Region 6 East South Central Division 3298 1502 1323 860 3298 26.07641 0.6211 0 297 1605 18.504673 0.94340 1 250 1016 24.60630 0.32070 0 74 307 24.10423 0.11920 0 324 1323 24.48980 0.17380 0 710 2231 31.824294 0.8976 1 654 3565 18.34502 0.7018 0 411 12.46210 0.5001 0 738 22.37720 0.3934 0 936 2861 32.71583 0.9807 1 138 825 16.727273 0.5715 0 9 3155 0.2852615 0.25010 0 1979 3298 60.006064 0.77030 1 1502 14 0.9320905 0.3234 0 659 43.8748336 0.9849 1 44 1323 3.325775 0.7062 0 137 1323 10.3552532 0.73130 0 0 3298 0.0000 0.3640 0 3.33770 0.7351 2 2.69580 0.6028 1 0.77030 0.7631 1 3.10980 0.7827 1 9.91360 0.7557 5 3499 1825 1462 1760 3499 50.300086 0.9396 1 42 966 4.347826 0.45390 0 426 1274 33.437991 0.85200 1 52 188 27.65957 0.1824 0 478 1462 32.69494 0.61110 0 422 2488 16.961415 0.7638 1 497 3499 14.204058 0.8246 1 853 24.378394 0.8688 1 808 23.09231 0.58290 0 908 2691.100 33.740844 0.9808 1 179 811.6985 22.0525243 0.73230 0 8 3248 0.2463054 0.26220 0 1986 3498.713 56.7637257 0.717500 0 1825 29 1.5890411 0.3551 0 576 31.5616438 0.9594 1 88 1462 6.0191518 0.82690 1 148 1461.993 10.123166 0.7364 0 38 3499 1.0860246 0.7013 0 3.59300 0.8073 3 3.42700 0.91560 2 0.717500 0.711400 0 3.57910 0.9216 2 11.316600 0.9150 7 Yes 0 0 \$0 0 0 \$0 0 Census Tract 211, Autauga County, Alabama 17997 74000 20620 88600 20876.52 85840 -256.52 -0.0122875 2760 0.0321528 134.13 145.41 Autauga County, Alabama Montgomery-Alexander City, AL CSA CS388
01003010200 01003 010200 AL Alabama Baldwin County 3 South Region 6 East South Central Division 2612 1220 1074 338 2605 12.97505 0.2907 0 44 1193 3.688181 0.14720 0 172 928 18.53448 0.13090 0 31 146 21.23288 0.09299 0 203 1074 18.90130 0.05657 0 455 1872 24.305556 0.8016 1 456 2730 16.70330 0.6445 0 401 15.35222 0.6847 0 563 21.55436 0.3406 0 410 2038 20.11776 0.7755 1 64 779 8.215661 0.2181 0 0 2510 0.0000000 0.09298 0 329 2612 12.595712 0.31130 0 1220 38 3.1147541 0.4648 0 385 31.5573770 0.9545 1 20 1074 1.862197 0.5509 0 43 1074 4.0037244 0.40880 0 0 2612 0.0000 0.3640 0 1.94057 0.3398 1 2.11188 0.2802 1 0.31130 0.3084 0 2.74300 0.6129 1 7.10675 0.3771 3 2928 1312 1176 884 2928 30.191257 0.7334 0 29 1459 1.987663 0.13560 0 71 830 8.554217 0.03726 0 134 346 38.72832 0.3964 0 205 1176 17.43197 0.12010 0 294 2052 14.327485 0.6940 0 219 2925 7.487179 0.5423 0 556 18.989071 0.6705 0 699 23.87295 0.63390 0 489 2226.455 21.963167 0.8122 1 191 783.8820 24.3659136 0.77990 1 0 2710 0.0000000 0.09479 0 398 2927.519 13.5951280 0.251100 0 1312 13 0.9908537 0.3111 0 400 30.4878049 0.9557 1 6 1176 0.5102041 0.25900 0 81 1176.202 6.886570 0.6115 0 7 2928 0.2390710 0.4961 0 2.22540 0.4183 0 2.99129 0.76340 2 0.251100 0.249000 0 2.63340 0.5496 1 8.101190 0.5207 3 Yes 0 0 \$0 1 408000 \$408,000 1 Census Tract 102, Baldwin County, Alabama 23862 103200 26085 136900 27679.92 119712 -1594.92 -0.0576201 17188 0.1435779 128.38 166.27 Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01003010500 01003 010500 AL Alabama Baldwin County 3 South Region 6 East South Central Division 4230 1779 1425 498 3443 14.46413 0.3337 0 166 1625 10.215385 0.71790 0 151 1069 14.12535 0.04638 0 196 356 55.05618 0.73830 0 347 1425 24.35088 0.17010 0 707 2945 24.006791 0.7967 1 528 4001 13.19670 0.5005 0 619 14.63357 0.6436 0 790 18.67612 0.1937 0 536 3096 17.31266 0.6572 0 165 920 17.934783 0.6102 0 20 4021 0.4973887 0.32320 0 754 4230 17.825059 0.40230 0 1779 97 5.4525014 0.5525 0 8 0.4496908 0.4600 0 63 1425 4.421053 0.7762 1 90 1425 6.3157895 0.56910 0 787 4230 18.6052 0.9649 1 2.51890 0.5121 1 2.42790 0.4539 0 0.40230 0.3986 0 3.32270 0.8628 2 8.67180 0.6054 3 5877 1975 1836 820 5244 15.636918 0.3902 0 90 2583 3.484321 0.33610 0 159 1345 11.821561 0.10530 0 139 491 28.30957 0.1924 0 298 1836 16.23094 0.09053 0 570 4248 13.418079 0.6669 0 353 5247 6.727654 0.4924 0 1109 18.870172 0.6645 0 1144 19.46571 0.34110 0 717 4102.545 17.476956 0.6332 0 103 1286.1180 8.0085961 0.23410 0 0 5639 0.0000000 0.09479 0 868 5877.481 14.7682323 0.270900 0 1975 26 1.3164557 0.3359 0 45 2.2784810 0.6271 0 9 1836 0.4901961 0.25400 0 116 1835.798 6.318779 0.5811 0 633 5877 10.7708014 0.9507 1 1.97613 0.3410 0 1.96769 0.19610 0 0.270900 0.268600 0 2.74880 0.6077 1 6.963520 0.3406 1 Yes 0 0 \$0 0 0 \$0 0 Census Tract 105, Baldwin County, Alabama 21585 121100 28301 148500 25038.60 140476 3262.40 0.1302948 8024 0.0571201 191.57 213.49 Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01003010600 01003 010600 AL Alabama Baldwin County 3 South Region 6 East South Central Division 3724 1440 1147 1973 3724 52.98067 0.9342 1 142 1439 9.867964 0.69680 0 235 688 34.15698 0.62950 0 187 459 40.74074 0.40290 0 422 1147 36.79163 0.55150 0 497 1876 26.492537 0.8354 1 511 3661 13.95794 0.5334 0 246 6.60580 0.1481 0 1256 33.72718 0.9305 1 496 2522 19.66693 0.7587 1 274 838 32.696897 0.8779 1 32 3479 0.9198045 0.42810 0 2606 3724 69.978518 0.81840 1 1440 21 1.4583333 0.3683 0 321 22.2916667 0.9036 1 97 1147 8.456844 0.8956 1 167 1147 14.5597210 0.82090 1 0 3724 0.0000 0.3640 0 3.55130 0.7859 2 3.14330 0.8145 3 0.81840 0.8108 1 3.35240 0.8725 3 10.86540 0.8550 9 4115 1534 1268 1676 3997 41.931449 0.8814 1 294 1809 16.252073 0.96740 1 341 814 41.891892 0.94320 1 204 454 44.93392 0.5438 0 545 1268 42.98107 0.83620 1 624 2425 25.731959 0.9002 1 994 4115 24.155529 0.9602 1 642 15.601458 0.4841 0 1126 27.36331 0.81750 1 568 2989.000 19.003011 0.7045 0 212 715.0000 29.6503497 0.85920 1 56 3825 1.4640523 0.53120 0 2715 4115.000 65.9781288 0.773200 1 1534 0 0.0000000 0.1079 0 529 34.4850065 0.9685 1 101 1268 7.9652997 0.87950 1 89 1268.000 7.018927 0.6184 0 17 4115 0.4131227 0.5707 0 4.54540 0.9754 5 3.39650 0.90810 2 0.773200 0.766700 1 3.14500 0.7858 2 11.860100 0.9520 10 Yes 0 0 \$0 1 8000000 \$8,000,000 1 Census Tract 106, Baldwin County, Alabama 17788 81600 16453 104700 20634.08 94656 -4181.08 -0.2026298 10044 0.1061105 NA NA Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01003011000 01003 011000 AL Alabama Baldwin County 3 South Region 6 East South Central Division 3758 2012 1576 1053 3758 28.02022 0.6597 0 66 1707 3.866432 0.16250 0 293 1297 22.59059 0.25080 0 83 279 29.74910 0.19030 0 376 1576 23.85787 0.15710 0 744 2723 27.322806 0.8465 1 996 4137 24.07542 0.8462 1 713 18.97286 0.8429 1 804 21.39436 0.3306 0 763 3295 23.15630 0.8670 1 155 1145 13.537118 0.4538 0 50 3475 1.4388489 0.51460 0 516 3758 13.730708 0.33300 0 2012 0 0.0000000 0.1224 0 606 30.1192843 0.9484 1 42 1576 2.664975 0.6476 0 96 1576 6.0913706 0.55620 0 0 3758 0.0000 0.3640 0 2.67200 0.5579 2 3.00890 0.7581 2 0.33300 0.3299 0 2.63860 0.5614 1 8.65250 0.6030 5 4921 1979 1732 1539 4908 31.356968 0.7523 1 150 2105 7.125891 0.72850 0 214 1471 14.547927 0.20260 0 59 261 22.60536 0.1167 0 273 1732 15.76212 0.07981 0 936 3332 28.091237 0.9206 1 861 4921 17.496444 0.8930 1 1039 21.113595 0.7653 1 1183 24.03983 0.64410 0 585 3738.000 15.650080 0.5371 0 81 1151.0000 7.0373588 0.19000 0 101 4546 2.2217334 0.61440 0 1244 4921.000 25.2794148 0.427800 0 1979 0 0.0000000 0.1079 0 527 26.6296109 0.9393 1 83 1732 4.7921478 0.77460 1 151 1732.000 8.718245 0.6904 0 20 4921 0.4064215 0.5688 0 3.37421 0.7528 3 2.75090 0.63780 1 0.427800 0.424200 0 3.08100 0.7597 2 9.633910 0.7366 6 Yes 0 0 \$0 0 0 \$0 0 Census Tract 110, Baldwin County, Alabama 19340 126400 23679 158700 22434.40 146624 1244.60 0.0554773 12076 0.0823603 129.69 188.85 Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01003011406 01003 011406 AL Alabama Baldwin County 3 South Region 6 East South Central Division 3317 6418 1307 583 3317 17.57612 0.4181 0 70 1789 3.912800 0.16690 0 221 685 32.26277 0.57540 0 284 622 45.65916 0.52130 0 505 1307 38.63810 0.60430 0 168 2255 7.450111 0.2800 0 919 3677 24.99320 0.8623 1 452 13.62677 0.5791 0 673 20.28942 0.2668 0 366 2769 13.21777 0.4276 0 96 887 10.822999 0.3359 0 180 3066 5.8708415 0.77920 1 473 3317 14.259873 0.34330 0 6418 3976 61.9507635 0.9655 1 384 5.9831723 0.7063 0 17 1307 1.300689 0.4632 0 10 1307 0.7651109 0.08684 0 0 3317 0.0000 0.3640 0 2.33160 0.4577 1 2.38860 0.4323 1 0.34330 0.3401 0 2.58584 0.5335 1 7.64934 0.4576 3 3226 7850 1797 228 3215 7.091757 0.1241 0 72 2055 3.503650 0.33910 0 302 1139 26.514486 0.69300 0 230 658 34.95441 0.3131 0 532 1797 29.60490 0.52020 0 128 2726 4.695525 0.2384 0 530 3226 16.429014 0.8749 1 790 24.488531 0.8715 1 342 10.60136 0.05624 0 280 2884.000 9.708738 0.1832 0 58 792.0000 7.3232323 0.20270 0 15 3107 0.4827808 0.34070 0 15 3226.000 0.4649721 0.002512 0 7850 5394 68.7133758 0.9706 1 274 3.4904459 0.6697 0 23 1797 1.2799110 0.41980 0 26 1797.000 1.446856 0.1647 0 0 3226 0.0000000 0.1831 0 2.09670 0.3785 1 1.65434 0.08785 1 0.002512 0.002491 0 2.40790 0.4381 1 6.161452 0.2215 3 Yes 0 0 \$0 0 0 \$0 0 Census Tract 114.06, Baldwin County, Alabama 29838 252000 32201 224200 34612.08 292320 -2411.08 -0.0696601 -68120 -0.2330323 NA NA Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01003011407 01003 011407 AL Alabama Baldwin County 3 South Region 6 East South Central Division 5187 6687 2066 1404 5172 27.14617 0.6423 0 172 1935 8.888889 0.63280 0 482 1433 33.63573 0.61530 0 367 633 57.97788 0.79510 1 849 2066 41.09390 0.67110 0 278 3618 7.683803 0.2906 0 1027 4945 20.76845 0.7735 1 1398 26.95200 0.9629 1 1263 24.34933 0.5302 0 596 3792 15.71730 0.5759 0 158 1633 9.675444 0.2833 0 29 4867 0.5958496 0.35240 0 170 5187 3.277424 0.07984 0 6687 2772 41.4535666 0.9251 1 197 2.9460147 0.6326 0 90 2066 4.356244 0.7729 1 0 2066 0.0000000 0.02586 0 0 5187 0.0000 0.3640 0 3.01030 0.6516 1 2.70470 0.6077 1 0.07984 0.0791 0 2.72046 0.6014 2 8.51530 0.5852 4 5608 7576 2543 1058 5602 18.886112 0.4835 0 32 2631 1.216268 0.05882 0 581 1979 29.358262 0.77080 1 309 564 54.78723 0.7671 1 890 2543 34.99803 0.67250 0 230 4433 5.188360 0.2698 0 776 5602 13.852196 0.8156 1 1527 27.228959 0.9205 1 567 10.11056 0.05099 0 615 5035.000 12.214498 0.3295 0 16 1746.0000 0.9163803 0.01566 0 0 5573 0.0000000 0.09479 0 441 5608.000 7.8637660 0.140300 0 7576 3055 40.3247096 0.9148 1 72 0.9503696 0.5383 0 0 2543 0.0000000 0.09796 0 125 2543.000 4.915454 0.4934 0 6 5608 0.1069900 0.4054 0 2.30022 0.4418 1 1.41144 0.04295 1 0.140300 0.139100 0 2.44986 0.4589 1 6.301820 0.2416 3 Yes 0 0 \$0 0 0 \$0 0 Census Tract 114.07, Baldwin County, Alabama 22317 292600 28418 241100 25887.72 339416 2530.28 0.0977406 -98316 -0.2896622 NA NA Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380
01003011502 01003 011502 AL Alabama Baldwin County 3 South Region 6 East South Central Division 9234 4606 3702 3160 9213 34.29936 0.7632 1 282 4002 7.046477 0.47570 0 526 2158 24.37442 0.31260 0 582 1544 37.69430 0.33410 0 1108 3702 29.92977 0.33740 0 997 6176 16.143135 0.6201 0 2074 10111 20.51231 0.7670 1 1450 15.70284 0.7043 0 2491 26.97639 0.6984 0 1542 7577 20.35106 0.7842 1 684 2718 25.165563 0.7767 1 532 8697 6.1170519 0.78590 1 3275 9234 35.466753 0.60970 0 4606 214 4.6461138 0.5268 0 828 17.9765523 0.8689 1 89 3702 2.404106 0.6192 0 293 3702 7.9146407 0.64700 0 0 9234 0.0000 0.3640 0 2.96340 0.6387 2 3.74950 0.9623 3 0.60970 0.6040 0 3.02590 0.7475 1 10.34850 0.8024 6 14165 6867 6002 2853 14165 20.141193 0.5175 0 313 7047 4.441606 0.46620 0 1181 4164 28.362152 0.74500 0 887 1838 48.25898 0.6211 0 2068 6002 34.45518 0.65900 0 1667 10750 15.506977 0.7286 0 2527 14165 17.839746 0.8980 1 3082 21.757854 0.7907 1 2506 17.69149 0.24240 0 3004 11659.000 25.765503 0.9038 1 407 3482.0000 11.6886847 0.39940 0 364 13519 2.6925068 0.65290 0 2755 14165.000 19.4493470 0.346300 0 6867 441 6.4220183 0.5555 0 526 7.6598223 0.7585 1 93 6002 1.5494835 0.46540 0 184 6002.000 3.065645 0.3373 0 0 14165 0.0000000 0.1831 0 3.26930 0.7261 1 2.98920 0.76250 2 0.346300 0.343400 0 2.29980 0.3856 1 8.904600 0.6398 4 Yes 0 0 \$0 2 8860000 \$8,860,000 1 Census Tract 115.02, Baldwin County, Alabama 20411 162700 22820 180400 23676.76 188732 -856.76 -0.0361857 -8332 -0.0441473 NA NA Baldwin County, Alabama Mobile-Daphne-Fairhope, AL CSA CS380

LIHTC Data

svi_divisional_lihtc_df0 <- left_join(svi_divisional_lihtc, census_pull_df, join_by("GEOID_2010_trt" == "GEOID"))

svi_divisional_lihtc_df1 <- left_join(svi_divisional_lihtc_df0, hpi_df_10_20, join_by("GEOID_2010_trt" == "GEOID10")) %>%
                          unite("county_fips", FIPS_st, FIPS_county, sep = "") 

svi_divisional_lihtc_df <- left_join(svi_divisional_lihtc_df1, msa_csa_crosswalk, join_by("county_fips" == "county_fips"))

svi_divisional_lihtc_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt county_fips FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 pre10_lihtc_project_cnt pre10_lihtc_project_dollars post10_lihtc_project_cnt post10_lihtc_project_dollars lihtc_flag lihtc_eligibility NAME Median_Income_10 Median_Home_Value_10 Median_Income_19 Median_Home_Value_19 Median_Income_10adj Median_Home_Value_10adj Median_Income_Change Median_Income_Change_pct Median_Home_Value_Change Median_Home_Value_Change_pct housing_price_index10 housing_price_index20 county_title cbsa cbsa_code
19013000500 19013 000500 IA Iowa Black Hawk County 2 Midwest Region 4 West North Central Division 1918 653 653 349 1900 18.36842 0.4573 0 151 1240 12.177419 0.8947 1 128 492 26.016260 0.672200 0 93 161 57.76398 0.8759 1 221 653 33.84380 0.7474 0 292 1157 25.237684 0.93060 1 347 1809 19.181868 0.8703 1 134 6.986444 0.131500 0 466 24.296142 0.51430 0 252 1357 18.570376 0.753900 1 186 468 39.743590 0.952400 1 102 1832 5.5676856 0.9196 1 733 1918 38.216893 0.8788 1 653 0 0.000000 0.09728 0 0 0.0000000 0.1716 0 0 653 0.000000 0.1372 0 53 653 8.116386 0.7427 0 0 1918 0.000000 0.3161 0 3.90030 0.8577 3 3.271700 0.864900 3 0.8788 0.8751 1 1.46488 0.07947 0 9.515680 0.7256 7 1742 688 625 585 1678 34.86293 0.8624 1 117 906 12.913907 0.9730 1 67 328 20.426829 0.734200 0 136 297 45.79125 0.7216 0 203 625 32.48000 0.8277 1 192 959 20.0208551 0.92800 1 132 1742 7.577497 0.6121 0 149 8.553387 0.096280 0 505 28.989667 0.873900 1 254 1237.000 20.533549 0.803600 1 122 357.0000 34.173670 0.930600 1 0 1621 0.0000000 0.1327 0 829 1742.000 47.588978 0.8874 1 688 0 0.00000 0.0847 0 0 0.000000 0.1738 0 9 625 1.4400000 0.55030 0 64 625.00 10.240000 0.8245 1 0 1742 0.0000000 0.1414 0 4.20320 0.9184 4 2.837080 0.6861000 3 0.8874 0.8842 1 1.77470 0.1856 1 9.702380 0.7535 9 0 0 0 0 0 Yes Census Tract 5, Black Hawk County, Iowa 21996 67000 21578 64700 25515.36 77720 -3937.36 -0.1543133 -13020 -0.1675244 NA NA Black Hawk County, Iowa Waterloo-Cedar Falls, IA MSA C4794
19103000600 19103 000600 IA Iowa Johnson County 2 Midwest Region 4 West North Central Division 3161 1846 1765 1356 3083 43.98313 0.9101 1 139 2099 6.622201 0.6243 0 39 255 15.294118 0.132900 0 900 1510 59.60265 0.8954 1 939 1765 53.20113 0.9753 1 30 1685 1.780415 0.04941 0 374 3183 11.749921 0.6140 0 376 11.894970 0.382100 0 161 5.093325 0.01140 0 187 2994 6.245825 0.052110 0 53 418 12.679426 0.504900 0 37 3109 1.1900933 0.6912 0 481 3161 15.216704 0.6618 0 1846 1068 57.854821 0.98060 1 14 0.7583965 0.4131 0 0 1765 0.000000 0.1372 0 200 1765 11.331445 0.8423 1 78 3161 2.467574 0.7596 1 3.17311 0.7090 2 1.641710 0.090820 0 0.6618 0.6590 0 3.13280 0.79140 3 8.609420 0.6083 5 3527 1999 1847 1820 3425 53.13869 0.9705 1 123 2258 5.447298 0.7512 1 57 337 16.913947 0.515200 0 796 1510 52.71523 0.8521 1 853 1847 46.18300 0.9667 1 39 2037 1.9145803 0.08963 0 393 3432 11.451049 0.7968 1 446 12.645308 0.251600 0 185 5.245251 0.012150 0 231 3246.994 7.114273 0.056830 0 70 394.7498 17.732749 0.676400 0 58 3400 1.7058824 0.7510 1 1169 3526.557 33.148474 0.8109 1 1999 1125 56.27814 0.9772 1 0 0.000000 0.1738 0 16 1847 0.8662696 0.41600 0 265 1846.57 14.350930 0.9002 1 95 3527 2.6935072 0.7704 1 3.57483 0.8078 4 1.747980 0.1249000 1 0.8109 0.8079 1 3.23760 0.8184 3 9.371310 0.7118 9 0 0 0 0 0 Yes Census Tract 6, Johnson County, Iowa 15939 142500 19854 257500 18489.24 165300 1364.76 0.0738137 92200 0.5577737 201.44 293.09 Johnson County, Iowa Iowa City, IA MSA C2698
19103001100 19103 001100 IA Iowa Johnson County 2 Midwest Region 4 West North Central Division 4138 1680 1601 2558 3792 67.45781 0.9911 1 172 3125 5.504000 0.5055 0 43 257 16.731517 0.193200 0 962 1344 71.57738 0.9713 1 1005 1601 62.77327 0.9945 1 25 1178 2.122241 0.06233 0 353 4208 8.388783 0.3911 0 83 2.005800 0.011970 0 150 3.624940 0.00741 0 156 3683 4.235677 0.016450 0 0 358 0.000000 0.004282 0 11 4068 0.2704031 0.3623 0 322 4138 7.781537 0.4349 0 1680 457 27.202381 0.89670 1 18 1.0714286 0.4486 0 0 1601 0.000000 0.1372 0 175 1601 10.930668 0.8323 1 346 4138 8.361527 0.9139 1 2.94453 0.6524 2 0.402412 0.001325 0 0.4349 0.4331 0 3.22870 0.82630 3 7.010542 0.3637 5 4742 2076 1851 2960 4333 68.31295 0.9954 1 133 3227 4.121475 0.6134 0 61 285 21.403509 0.778600 1 1185 1566 75.67050 0.9911 1 1246 1851 67.31496 0.9987 1 43 1434 2.9986053 0.16620 0 204 4706 4.334892 0.3480 0 126 2.657107 0.009305 0 220 4.639393 0.011200 0 307 4115.000 7.460510 0.066910 0 53 294.0000 18.027211 0.686100 0 19 4695 0.4046858 0.4766 0 736 4742.000 15.520877 0.5503 0 2076 512 24.66281 0.8694 1 0 0.000000 0.1738 0 12 1851 0.6482982 0.35040 0 281 1851.00 15.180983 0.9105 1 451 4742 9.5107550 0.9436 1 3.12170 0.6980 2 1.250115 0.0251700 0 0.5503 0.5483 0 3.24770 0.8231 3 8.169815 0.5351 5 0 0 0 0 0 Yes Census Tract 11, Johnson County, Iowa 8019 183700 10460 280000 9302.04 213092 1157.96 0.1244845 66908 0.3139864 252.22 286.46 Johnson County, Iowa Iowa City, IA MSA C2698
19103001600 19103 001600 IA Iowa Johnson County 2 Midwest Region 4 West North Central Division 7385 2944 2849 5589 7043 79.35539 0.9981 1 572 5172 11.059551 0.8686 1 39 167 23.353293 0.548100 0 2168 2682 80.83520 0.9904 1 2207 2849 77.46578 0.9990 1 22 1443 1.524601 0.04067 0 698 7281 9.586595 0.4788 0 129 1.746784 0.010070 0 114 1.543670 0.00475 0 415 6925 5.992780 0.046600 0 28 258 10.852713 0.402700 0 43 7363 0.5840011 0.5225 0 959 7385 12.985782 0.6084 0 2944 1513 51.392663 0.97470 1 0 0.0000000 0.1716 0 0 2849 0.000000 0.1372 0 440 2849 15.444015 0.9081 1 443 7385 5.998646 0.8803 1 3.38517 0.7597 3 0.986620 0.008515 0 0.6084 0.6059 0 3.07190 0.76520 3 8.052090 0.5296 6 8611 4188 3649 6422 8273 77.62601 0.9981 1 315 5963 5.282576 0.7381 0 41 281 14.590747 0.356000 0 2354 3368 69.89311 0.9821 1 2395 3649 65.63442 0.9983 1 92 1851 4.9702863 0.32870 0 373 8611 4.331669 0.3477 0 170 1.974219 0.007406 0 228 2.647776 0.006836 0 566 8077.000 7.007552 0.053030 0 72 362.0000 19.889503 0.732900 0 60 8483 0.7072969 0.5794 0 1324 8611.000 15.375682 0.5471 0 4188 1998 47.70774 0.9646 1 0 0.000000 0.1738 0 0 3649 0.0000000 0.09916 0 558 3649.00 15.291861 0.9116 1 306 8611 3.5535942 0.8293 1 3.41090 0.7695 2 1.379572 0.0410600 0 0.5471 0.5451 0 2.97846 0.7061 3 8.316032 0.5637 5 0 0 1 475339 1 Yes Census Tract 16, Johnson County, Iowa 6199 177500 7890 196200 7190.84 205900 699.16 0.0972293 -9700 -0.0471102 NA NA Johnson County, Iowa Iowa City, IA MSA C2698
19153004800 19153 004800 IA Iowa Polk County 2 Midwest Region 4 West North Central Division 2896 1176 1038 1821 2828 64.39180 0.9854 1 87 1318 6.600911 0.6230 0 122 406 30.049261 0.803600 1 366 632 57.91139 0.8784 1 488 1038 47.01349 0.9370 1 576 1539 37.426901 0.98710 1 674 2960 22.770270 0.9281 1 118 4.074586 0.039520 0 1112 38.397790 0.98560 1 398 1820 21.868132 0.870900 1 306 641 47.737910 0.976600 1 324 2622 12.3569794 0.9740 1 2000 2896 69.060773 0.9500 1 1176 157 13.350340 0.76360 1 12 1.0204082 0.4431 0 67 1038 6.454721 0.9534 1 160 1038 15.414258 0.9076 1 57 2896 1.968232 0.7277 0 4.46060 0.9406 4 3.846620 0.975800 4 0.9500 0.9461 1 3.79540 0.96270 3 13.052620 0.9885 12 2703 1008 932 1211 2641 45.85384 0.9428 1 103 1313 7.844631 0.8858 1 85 469 18.123667 0.601900 0 190 463 41.03672 0.6188 0 275 932 29.50644 0.7625 1 303 1431 21.1740042 0.93830 1 480 2644 18.154312 0.9409 1 319 11.801702 0.215000 0 904 33.444321 0.962600 1 359 1740.000 20.632184 0.806700 1 272 587.0000 46.337308 0.979800 1 329 2404 13.6855241 0.9827 1 2002 2703.000 74.065853 0.9518 1 1008 144 14.28571 0.7571 1 0 0.000000 0.1738 0 29 932 3.1115880 0.79540 1 148 932.00 15.879828 0.9183 1 82 2703 3.0336663 0.7928 1 4.47030 0.9546 5 3.946800 0.9873000 4 0.9518 0.9483 1 3.43740 0.8850 4 12.806300 0.9852 14 0 0 0 0 0 Yes Census Tract 48, Polk County, Iowa 16847 76000 20716 84200 19542.52 88160 1173.48 0.0600475 -3960 -0.0449183 98.94 160.82 Polk County, Iowa Des Moines-Newton-Pella, IA CSA CS218
19163010700 19163 010700 IA Iowa Scott County 2 Midwest Region 4 West North Central Division 1513 796 622 1192 1513 78.78387 0.9975 1 159 633 25.118483 0.9878 1 109 228 47.807018 0.984200 1 223 394 56.59898 0.8612 1 332 622 53.37621 0.9762 1 293 808 36.262376 0.98520 1 334 1393 23.977028 0.9409 1 30 1.982816 0.011780 0 540 35.690681 0.97040 1 205 1043 19.654842 0.800300 1 167 317 52.681388 0.984600 1 43 1337 3.2161556 0.8603 1 950 1513 62.789161 0.9382 1 796 97 12.185930 0.74550 0 0 0.0000000 0.1716 0 0 622 0.000000 0.1372 0 194 622 31.189711 0.9802 1 0 1513 0.000000 0.3161 0 4.88760 0.9928 5 3.627380 0.945300 4 0.9382 0.9343 1 2.35060 0.41000 1 11.803780 0.9359 11 1273 725 529 596 1231 48.41592 0.9536 1 24 537 4.469274 0.6548 0 98 221 44.343891 0.994900 1 232 308 75.32468 0.9909 1 330 529 62.38185 0.9970 1 131 870 15.0574713 0.85280 1 44 1273 3.456402 0.2558 0 163 12.804399 0.260900 0 286 22.466614 0.454600 0 161 979.000 16.445352 0.601000 0 74 310.0000 23.870968 0.818100 1 44 1176 3.7414966 0.8794 1 623 1273.000 48.939513 0.8918 1 725 58 8.00000 0.6260 0 12 1.655172 0.5183 0 6 529 1.1342155 0.48850 0 137 529.00 25.897921 0.9736 1 89 1273 6.9913590 0.9214 1 3.71400 0.8363 3 3.014000 0.7732000 2 0.8918 0.8886 1 3.52780 0.9113 2 11.147600 0.9019 8 0 0 0 0 0 Yes Census Tract 107, Scott County, Iowa 11169 90900 21215 NA 12956.04 105444 8258.96 0.6374602 NA NA NA NA Scott County, Iowa Davenport-Moline-Rock Island, IA-IL MSA C1934
19163011400 19163 011400 IA Iowa Scott County 2 Midwest Region 4 West North Central Division 2513 1288 1003 1462 2505 58.36327 0.9724 1 101 1206 8.374793 0.7603 1 131 413 31.719128 0.849400 1 417 590 70.67797 0.9679 1 548 1003 54.63609 0.9793 1 302 1377 21.931736 0.89430 1 541 2568 21.066978 0.9040 1 107 4.257859 0.042940 0 769 30.600875 0.88500 1 253 1820 13.901099 0.454200 0 262 575 45.565217 0.971800 1 47 2159 2.1769338 0.8016 1 1201 2513 47.791484 0.9109 1 1288 36 2.795031 0.45680 0 0 0.0000000 0.1716 0 10 1003 0.997009 0.5118 0 131 1003 13.060818 0.8760 1 0 2513 0.000000 0.3161 0 4.51030 0.9487 5 3.155540 0.821400 3 0.9109 0.9071 1 2.33230 0.40260 1 10.909040 0.8657 10 2022 1140 820 617 1899 32.49078 0.8325 1 37 988 3.744939 0.5548 0 62 367 16.893733 0.513600 0 145 453 32.00883 0.3978 0 207 820 25.24390 0.6315 0 155 1274 12.1664050 0.78200 1 80 1937 4.130098 0.3254 0 279 13.798220 0.317100 0 473 23.392681 0.531100 0 220 1452.000 15.151515 0.506900 0 127 401.0000 31.670823 0.913300 1 12 1890 0.6349206 0.5560 0 1039 2022.000 51.384768 0.8997 1 1140 0 0.00000 0.0847 0 0 0.000000 0.1738 0 0 820 0.0000000 0.09916 0 40 820.00 4.878049 0.5463 0 89 2022 4.4015826 0.8701 1 3.12620 0.6993 2 2.824400 0.6805000 1 0.8997 0.8965 1 1.77406 0.1854 1 8.624360 0.6091 5 0 0 0 0 0 Yes Census Tract 114, Scott County, Iowa 17891 85500 22784 81000 20753.56 99180 2030.44 0.0978357 -18180 -0.1833031 103.13 115.20 Scott County, Iowa Davenport-Moline-Rock Island, IA-IL MSA C1934
19169000500 19169 000500 IA Iowa Story County 2 Midwest Region 4 West North Central Division 2099 888 788 1339 2099 63.79228 0.9844 1 80 1250 6.400000 0.6042 0 0 0 NaN NA NA 391 788 49.61929 0.7537 1 391 788 49.61929 0.9580 1 12 494 2.429150 0.07516 0 320 2322 13.781223 0.7037 0 0 0.000000 0.002565 0 283 13.482611 0.04047 0 64 2078 3.079884 0.006276 0 56 246 22.764228 0.802300 1 52 1961 2.6517083 0.8326 1 765 2099 36.445927 0.8714 1 888 194 21.846847 0.86250 1 0 0.0000000 0.1716 0 92 788 11.675127 0.9854 1 67 788 8.502538 0.7587 1 0 2099 0.000000 0.3161 0 3.32546 0.7472 2 1.684211 0.103700 2 0.8714 0.8677 1 3.09430 0.77500 3 8.975371 0.6592 8 4073 865 776 1315 1775 74.08451 0.9977 1 95 2236 4.248658 0.6305 0 0 6 0.000000 0.001239 0 433 770 56.23377 0.8983 1 433 776 55.79897 0.9914 1 10 498 2.0080321 0.09533 0 152 4073 3.731893 0.2798 0 0 0.000000 0.001804 0 69 1.694083 0.004937 0 78 1710.000 4.561403 0.011020 0 4 143.0000 2.797203 0.031010 0 60 4032 1.4880952 0.7264 0 901 4073.000 22.121287 0.6861 0 865 129 14.91329 0.7669 1 56 6.473988 0.7549 1 0 776 0.0000000 0.09916 0 141 776.00 18.170103 0.9390 1 2298 4073 56.4203290 0.9953 1 2.99473 0.6634 2 0.775171 0.0047300 0 0.6861 0.6836 0 3.55526 0.9164 4 8.011261 0.5073 6 0 0 0 0 0 Yes Census Tract 5, Story County, Iowa 9006 NA 5699 NA 10446.96 NA -4747.96 -0.4544825 NA NA NA NA Story County, Iowa Ames-Boone, IA CSA CS112
19169000700 19169 000700 IA Iowa Story County 2 Midwest Region 4 West North Central Division 3638 1665 1655 2272 3568 63.67713 0.9838 1 128 2453 5.218100 0.4694 0 90 330 27.272727 0.719500 0 978 1325 73.81132 0.9776 1 1068 1655 64.53172 0.9952 1 25 889 2.812149 0.09141 0 346 3647 9.487250 0.4725 0 146 4.013194 0.038380 0 262 7.201759 0.01520 0 58 3374 1.719028 0.002092 0 46 296 15.540541 0.622000 0 46 3550 1.2957746 0.7099 0 545 3638 14.980759 0.6555 0 1665 675 40.540540 0.95340 1 0 0.0000000 0.1716 0 31 1655 1.873112 0.6972 0 187 1655 11.299094 0.8412 1 70 3638 1.924134 0.7245 0 3.01231 0.6721 2 1.387572 0.037840 0 0.6555 0.6528 0 3.38790 0.88780 2 8.443282 0.5883 4 3747 2013 1841 2350 3713 63.29114 0.9909 1 240 2447 9.807928 0.9358 1 22 221 9.954751 0.098470 0 1185 1620 73.14815 0.9884 1 1207 1841 65.56219 0.9981 1 9 1137 0.7915567 0.02621 0 618 3743 16.510820 0.9192 1 115 3.069122 0.010250 0 107 2.855618 0.007026 0 125 3602.000 3.470294 0.004372 0 6 225.0000 2.666667 0.028720 0 52 3698 1.4061655 0.7159 0 1169 3747.000 31.198292 0.7957 1 2013 955 47.44163 0.9644 1 0 0.000000 0.1738 0 47 1841 2.5529603 0.73380 0 274 1841.00 14.883216 0.9065 1 34 3747 0.9073926 0.5431 0 3.87021 0.8632 4 0.766268 0.0041630 0 0.7957 0.7928 1 3.32160 0.8482 2 8.753778 0.6259 7 0 0 0 0 0 Yes Census Tract 7, Story County, Iowa 10427 189100 12207 218900 12095.32 219356 111.68 0.0092333 -456 -0.0020788 176.75 217.09 Story County, Iowa Ames-Boone, IA CSA CS112
19169001100 19169 001100 IA Iowa Story County 2 Midwest Region 4 West North Central Division 6708 1985 1913 2897 4395 65.91581 0.9878 1 320 3946 8.109478 0.7397 0 18 417 4.316547 0.003818 0 1170 1496 78.20856 0.9855 1 1188 1913 62.10141 0.9939 1 41 1298 3.158706 0.10790 0 393 5953 6.601713 0.2634 0 261 3.890877 0.034580 0 202 3.011330 0.00627 0 210 3904 5.379098 0.032900 0 22 424 5.188679 0.094580 0 41 6589 0.6222492 0.5364 0 544 6708 8.109720 0.4469 0 1985 952 47.959698 0.97030 1 0 0.0000000 0.1716 0 25 1913 1.306848 0.5927 0 172 1913 8.991113 0.7748 1 2313 6708 34.481217 0.9875 1 3.09270 0.6918 2 0.704730 0.003595 0 0.4469 0.4450 0 3.49690 0.91410 3 7.741230 0.4789 5 6579 2147 1823 3075 4627 66.45775 0.9939 1 251 3663 6.852307 0.8457 1 26 292 8.904110 0.067490 0 926 1531 60.48334 0.9381 1 952 1823 52.22161 0.9857 1 49 1120 4.3750000 0.27690 0 158 6577 2.402311 0.1466 0 163 2.477580 0.008925 0 240 3.647971 0.008925 0 260 4411.000 5.894355 0.026610 0 0 412.0000 0.000000 0.003424 0 0 6515 0.0000000 0.1327 0 652 6579.000 9.910321 0.3855 0 2147 1321 61.52771 0.9821 1 43 2.002795 0.5435 0 0 1823 0.0000000 0.09916 0 185 1823.00 10.148108 0.8230 1 1952 6579 29.6701626 0.9858 1 3.24880 0.7311 3 0.180584 0.0007569 0 0.3855 0.3841 0 3.43356 0.8836 3 7.248444 0.3843 6 0 0 0 0 0 Yes Census Tract 11, Story County, Iowa 7859 224400 9321 248400 9116.44 260304 204.56 0.0224386 -11904 -0.0457311 NA NA Story County, Iowa Ames-Boone, IA CSA CS112
svi_national_lihtc_df0 <- left_join(svi_national_lihtc, census_pull_df, join_by("GEOID_2010_trt" == "GEOID"))

svi_national_lihtc_df1 <- left_join(svi_national_lihtc_df0, hpi_df_10_20, join_by("GEOID_2010_trt" == "GEOID10")) %>%
                          unite("county_fips", FIPS_st, FIPS_county, sep = "") 

svi_national_lihtc_df <- left_join(svi_national_lihtc_df1, msa_csa_crosswalk, join_by("county_fips" == "county_fips"))

svi_national_lihtc_df %>% head(10) %>% kbl() %>% kable_styling() %>% scroll_box(width = "100%")
GEOID_2010_trt county_fips FIPS_tract state state_name county region_number region division_number division E_TOTPOP_10 E_HU_10 E_HH_10 E_POV150_10 ET_POVSTATUS_10 EP_POV150_10 EPL_POV150_10 F_POV150_10 E_UNEMP_10 ET_EMPSTATUS_10 EP_UNEMP_10 EPL_UNEMP_10 F_UNEMP_10 E_HBURD_OWN_10 ET_HOUSINGCOST_OWN_10 EP_HBURD_OWN_10 EPL_HBURD_OWN_10 F_HBURD_OWN_10 E_HBURD_RENT_10 ET_HOUSINGCOST_RENT_10 EP_HBURD_RENT_10 EPL_HBURD_RENT_10 F_HBURD_RENT_10 E_HBURD_10 ET_HOUSINGCOST_10 EP_HBURD_10 EPL_HBURD_10 F_HBURD_10 E_NOHSDP_10 ET_EDSTATUS_10 EP_NOHSDP_10 EPL_NOHSDP_10 F_NOHSDP_10 E_UNINSUR_12 ET_INSURSTATUS_12 EP_UNINSUR_12 EPL_UNINSUR_12 F_UNINSUR_12 E_AGE65_10 EP_AGE65_10 EPL_AGE65_10 F_AGE65_10 E_AGE17_10 EP_AGE17_10 EPL_AGE17_10 F_AGE17_10 E_DISABL_12 ET_DISABLSTATUS_12 EP_DISABL_12 EPL_DISABL_12 F_DISABL_12 E_SNGPNT_10 ET_FAMILIES_10 EP_SNGPNT_10 EPL_SNGPNT_10 F_SNGPNT_10 E_LIMENG_10 ET_POPAGE5UP_10 EP_LIMENG_10 EPL_LIMENG_10 F_LIMENG_10 E_MINRTY_10 ET_POPETHRACE_10 EP_MINRTY_10 EPL_MINRTY_10 F_MINRTY_10 E_STRHU_10 E_MUNIT_10 EP_MUNIT_10 EPL_MUNIT_10 F_MUNIT_10 E_MOBILE_10 EP_MOBILE_10 EPL_MOBILE_10 F_MOBILE_10 E_CROWD_10 ET_OCCUPANTS_10 EP_CROWD_10 EPL_CROWD_10 F_CROWD_10 E_NOVEH_10 ET_KNOWNVEH_10 EP_NOVEH_10 EPL_NOVEH_10 F_NOVEH_10 E_GROUPQ_10 ET_HHTYPE_10 EP_GROUPQ_10 EPL_GROUPQ_10 F_GROUPQ_10 SPL_THEME1_10 RPL_THEME1_10 F_THEME1_10 SPL_THEME2_10 RPL_THEME2_10 F_THEME2_10 SPL_THEME3_10 RPL_THEME3_10 F_THEME3_10 SPL_THEME4_10 RPL_THEME4_10 F_THEME4_10 SPL_THEMES_10 RPL_THEMES_10 F_TOTAL_10 E_TOTPOP_20 E_HU_20 E_HH_20 E_POV150_20 ET_POVSTATUS_20 EP_POV150_20 EPL_POV150_20 F_POV150_20 E_UNEMP_20 ET_EMPSTATUS_20 EP_UNEMP_20 EPL_UNEMP_20 F_UNEMP_20 E_HBURD_OWN_20 ET_HOUSINGCOST_OWN_20 EP_HBURD_OWN_20 EPL_HBURD_OWN_20 F_HBURD_OWN_20 E_HBURD_RENT_20 ET_HOUSINGCOST_RENT_20 EP_HBURD_RENT_20 EPL_HBURD_RENT_20 F_HBURD_RENT_20 E_HBURD_20 ET_HOUSINGCOST_20 EP_HBURD_20 EPL_HBURD_20 F_HBURD_20 E_NOHSDP_20 ET_EDSTATUS_20 EP_NOHSDP_20 EPL_NOHSDP_20 F_NOHSDP_20 E_UNINSUR_20 ET_INSURSTATUS_20 EP_UNINSUR_20 EPL_UNINSUR_20 F_UNINSUR_20 E_AGE65_20 EP_AGE65_20 EPL_AGE65_20 F_AGE65_20 E_AGE17_20 EP_AGE17_20 EPL_AGE17_20 F_AGE17_20 E_DISABL_20 ET_DISABLSTATUS_20 EP_DISABL_20 EPL_DISABL_20 F_DISABL_20 E_SNGPNT_20 ET_FAMILIES_20 EP_SNGPNT_20 EPL_SNGPNT_20 F_SNGPNT_20 E_LIMENG_20 ET_POPAGE5UP_20 EP_LIMENG_20 EPL_LIMENG_20 F_LIMENG_20 E_MINRTY_20 ET_POPETHRACE_20 EP_MINRTY_20 EPL_MINRTY_20 F_MINRTY_20 E_STRHU_20 E_MUNIT_20 EP_MUNIT_20 EPL_MUNIT_20 F_MUNIT_20 E_MOBILE_20 EP_MOBILE_20 EPL_MOBILE_20 F_MOBILE_20 E_CROWD_20 ET_OCCUPANTS_20 EP_CROWD_20 EPL_CROWD_20 F_CROWD_20 E_NOVEH_20 ET_KNOWNVEH_20 EP_NOVEH_20 EPL_NOVEH_20 F_NOVEH_20 E_GROUPQ_20 ET_HHTYPE_20 EP_GROUPQ_20 EPL_GROUPQ_20 F_GROUPQ_20 SPL_THEME1_20 RPL_THEME1_20 F_THEME1_20 SPL_THEME2_20 RPL_THEME2_20 F_THEME2_20 SPL_THEME3_20 RPL_THEME3_20 F_THEME3_20 SPL_THEME4_20 RPL_THEME4_20 F_THEME4_20 SPL_THEMES_20 RPL_THEMES_20 F_TOTAL_20 pre10_lihtc_project_cnt pre10_lihtc_project_dollars post10_lihtc_project_cnt post10_lihtc_project_dollars lihtc_flag lihtc_eligibility NAME Median_Income_10 Median_Home_Value_10 Median_Income_19 Median_Home_Value_19 Median_Income_10adj Median_Home_Value_10adj Median_Income_Change Median_Income_Change_pct Median_Home_Value_Change Median_Home_Value_Change_pct housing_price_index10 housing_price_index20 county_title cbsa cbsa_code
01005950700 01005 950700 AL Alabama Barbour County 3 South Region 6 East South Central Division 1753 687 563 615 1628 37.77641 0.8088 1 17 667 2.548726 0.06941 0 41 376 10.90426 0.01945 0 62 187 33.15508 0.24640 0 103 563 18.29485 0.04875 0 264 1208 21.85430 0.7570 1 201 1527 13.163065 0.4991 0 368 20.992584 0.89510 1 462 26.354820 0.66130 0 211 1085 19.44700 0.7505 1 107 399 26.81704 0.8048 1 0 1628 0.0000000 0.09298 0 861 1753 49.11580 0.7101 0 687 17 2.4745269 0.4324 0 38 5.5312955 0.6970 0 3 563 0.5328597 0.3037 0 19 563 3.374778 0.3529 0 233 1753 13.29150 0.9517 1 2.18306 0.4137 2 3.20468 0.8377 3 0.7101 0.7035 0 2.7377 0.6100 1 8.83554 0.6264 6 1527 691 595 565 1365 41.39194 0.8765 1 37 572 6.468532 0.6776 0 70 376 18.617021 0.38590 0 92 219 42.009132 0.47360 0 162 595 27.22689 0.44540 0 280 1114 25.13465 0.8942 1 105 1378 7.619739 0.5505 0 383 25.081860 0.88450 1 337 22.069417 0.51380 0 237 1041.0000 22.76657 0.8360 1 144 413.0000 34.86683 0.9114 1 11 1466 0.7503411 0.40700 0 711 1527.0000 46.56189 0.6441 0 691 13 1.8813314 0.3740 0 37 5.3545586 0.7152 0 0 595 0.0000000 0.09796 0 115 595.0000 19.327731 0.8859 1 149 1527 9.7576948 0.9470 1 3.44420 0.7707 2 3.55270 0.9403 3 0.6441 0.6387 0 3.02006 0.7337 2 10.66106 0.8537 7 0 0 0 0 0 Yes Census Tract 9507, Barbour County, Alabama 15257 133700 17244 137500 17698.12 155092 -454.12 -0.0256592 -17592 -0.1134294 131.05 135.61 Barbour County, Alabama Eufaula, AL-GA MicroSA C2164
01011952100 01011 952100 AL Alabama Bullock County 3 South Region 6 East South Central Division 1652 796 554 564 1652 34.14044 0.7613 1 46 816 5.637255 0.33630 0 96 458 20.96070 0.19930 0 62 96 64.58333 0.89170 1 158 554 28.51986 0.29220 0 271 1076 25.18587 0.8163 1 155 1663 9.320505 0.3183 0 199 12.046005 0.47180 0 420 25.423729 0.60240 0 327 1279 25.56685 0.9151 1 137 375 36.53333 0.9108 1 0 1590 0.0000000 0.09298 0 1428 1652 86.44068 0.8939 1 796 0 0.0000000 0.1224 0 384 48.2412060 0.9897 1 19 554 3.4296029 0.7145 0 45 554 8.122744 0.6556 0 0 1652 0.00000 0.3640 0 2.52440 0.5138 2 2.99308 0.7515 2 0.8939 0.8856 1 2.8462 0.6637 1 9.25758 0.6790 6 1382 748 549 742 1382 53.69030 0.9560 1 40 511 7.827789 0.7730 1 110 402 27.363184 0.71780 0 45 147 30.612245 0.23070 0 155 549 28.23315 0.47730 0 181 905 20.00000 0.8253 1 232 1382 16.787265 0.8813 1 164 11.866860 0.27170 0 250 18.089725 0.26290 0 258 1132.0000 22.79152 0.8368 1 99 279.0000 35.48387 0.9162 1 33 1275 2.5882353 0.64520 0 1347 1382.0000 97.46744 0.9681 1 748 0 0.0000000 0.1079 0 375 50.1336898 0.9922 1 0 549 0.0000000 0.09796 0 37 549.0000 6.739526 0.6039 0 0 1382 0.0000000 0.1831 0 3.91290 0.8785 4 2.93280 0.7342 2 0.9681 0.9599 1 1.98506 0.2471 1 9.79886 0.7570 8 0 0 0 0 0 Yes Census Tract 9521, Bullock County, Alabama 19754 58200 18598 66900 22914.64 67512 -4316.64 -0.1883791 -612 -0.0090651 NA NA NA NA NA
01015000300 01015 000300 AL Alabama Calhoun County 3 South Region 6 East South Central Division 3074 1635 1330 1904 3067 62.08021 0.9710 1 293 1362 21.512482 0.96630 1 180 513 35.08772 0.65450 0 383 817 46.87882 0.55040 0 563 1330 42.33083 0.70280 0 720 2127 33.85049 0.9148 1 628 2835 22.151675 0.8076 1 380 12.361744 0.49340 0 713 23.194535 0.45030 0 647 2111 30.64898 0.9708 1 298 773 38.55110 0.9247 1 0 2878 0.0000000 0.09298 0 2623 3074 85.32856 0.8883 1 1635 148 9.0519878 0.6465 0 6 0.3669725 0.4502 0 68 1330 5.1127820 0.8082 1 303 1330 22.781955 0.9029 1 0 3074 0.00000 0.3640 0 4.36250 0.9430 4 2.93218 0.7233 2 0.8883 0.8800 1 3.1718 0.8070 2 11.35478 0.9009 9 2390 1702 1282 1287 2390 53.84937 0.9566 1 102 1066 9.568480 0.8541 1 158 609 25.944171 0.67520 0 286 673 42.496285 0.48560 0 444 1282 34.63339 0.66340 0 467 1685 27.71513 0.9180 1 369 2379 15.510719 0.8562 1 342 14.309623 0.40850 0 548 22.928870 0.57100 0 647 1831.0000 35.33588 0.9862 1 202 576.0000 35.06944 0.9130 1 16 2134 0.7497657 0.40690 0 1896 2390.0000 79.33054 0.8451 1 1702 96 5.6404230 0.5329 0 0 0.0000000 0.2186 0 0 1282 0.0000000 0.09796 0 186 1282.0000 14.508580 0.8308 1 43 2390 1.7991632 0.7727 1 4.24830 0.9395 4 3.28560 0.8773 2 0.8451 0.8379 1 2.45296 0.4602 2 10.83196 0.8718 9 0 0 0 0 0 Yes Census Tract 3, Calhoun County, Alabama 12211 41700 18299 51300 14164.76 48372 4134.24 0.2918680 2928 0.0605309 NA NA Calhoun County, Alabama Anniston-Oxford, AL MSA C1150
01015000500 01015 000500 AL Alabama Calhoun County 3 South Region 6 East South Central Division 1731 1175 743 1042 1619 64.36072 0.9767 1 124 472 26.271186 0.98460 1 136 461 29.50108 0.48970 0 163 282 57.80142 0.79190 1 299 743 40.24226 0.64910 0 340 1270 26.77165 0.8389 1 460 1794 25.641026 0.8722 1 271 15.655690 0.70190 0 368 21.259388 0.32190 0 507 1449 34.98965 0.9885 1 150 386 38.86010 0.9269 1 0 1677 0.0000000 0.09298 0 1559 1731 90.06355 0.9123 1 1175 50 4.2553191 0.5128 0 4 0.3404255 0.4480 0 0 743 0.0000000 0.1238 0 122 743 16.419919 0.8473 1 0 1731 0.00000 0.3640 0 4.32150 0.9362 4 3.03218 0.7679 2 0.9123 0.9038 1 2.2959 0.3818 1 10.56188 0.8244 8 940 907 488 586 940 62.34043 0.9815 1 59 297 19.865320 0.9833 1 100 330 30.303030 0.79220 1 58 158 36.708861 0.34970 0 158 488 32.37705 0.60200 0 199 795 25.03145 0.8930 1 118 940 12.553192 0.7770 1 246 26.170213 0.90530 1 118 12.553192 0.08233 0 383 822.5089 46.56484 0.9984 1 30 197.8892 15.16000 0.5363 0 0 889 0.0000000 0.09479 0 898 940.3866 95.49264 0.9489 1 907 0 0.0000000 0.1079 0 2 0.2205072 0.4456 0 2 488 0.4098361 0.23670 0 146 487.6463 29.939736 0.9404 1 0 940 0.0000000 0.1831 0 4.23680 0.9379 4 2.61712 0.5593 2 0.9489 0.9409 1 1.91370 0.2196 1 9.71652 0.7468 8 0 0 0 0 0 Yes Census Tract 5, Calhoun County, Alabama 11742 38800 13571 38800 13620.72 45008 -49.72 -0.0036503 -6208 -0.1379310 NA NA Calhoun County, Alabama Anniston-Oxford, AL MSA C1150
01015000600 01015 000600 AL Alabama Calhoun County 3 South Region 6 East South Central Division 2571 992 796 1394 2133 65.35396 0.9789 1 263 905 29.060773 0.98990 1 121 306 39.54248 0.75940 1 209 490 42.65306 0.44810 0 330 796 41.45729 0.68030 0 641 1556 41.19537 0.9554 1 416 1760 23.636364 0.8383 1 220 8.556982 0.24910 0 584 22.714897 0.41610 0 539 1353 39.83740 0.9955 1 243 466 52.14592 0.9783 1 30 2366 1.2679628 0.48990 0 1944 2571 75.61260 0.8440 1 992 164 16.5322581 0.7673 1 8 0.8064516 0.5110 0 46 796 5.7788945 0.8329 1 184 796 23.115578 0.9049 1 614 2571 23.88176 0.9734 1 4.44280 0.9548 4 3.12890 0.8088 2 0.8440 0.8362 1 3.9895 0.9792 4 12.40520 0.9696 11 1950 964 719 837 1621 51.63479 0.9467 1 157 652 24.079755 0.9922 1 22 364 6.043956 0.01547 0 129 355 36.338028 0.34200 0 151 719 21.00139 0.23030 0 363 1387 26.17159 0.9048 1 351 1613 21.760694 0.9435 1 249 12.769231 0.32090 0 356 18.256410 0.27140 0 332 1259.7041 26.35540 0.9135 1 136 435.6156 31.22018 0.8775 1 0 1891 0.0000000 0.09479 0 1463 1949.9821 75.02633 0.8219 1 964 14 1.4522822 0.3459 0 8 0.8298755 0.5269 0 19 719 2.6425591 0.61120 0 197 719.0542 27.397100 0.9316 1 329 1950 16.8717949 0.9655 1 4.01750 0.9001 4 2.47809 0.4764 2 0.8219 0.8149 1 3.38110 0.8712 2 10.69859 0.8583 9 0 0 0 0 0 Yes Census Tract 6, Calhoun County, Alabama 10958 48000 14036 43300 12711.28 55680 1324.72 0.1042161 -12380 -0.2223420 NA NA Calhoun County, Alabama Anniston-Oxford, AL MSA C1150
01015002101 01015 002101 AL Alabama Calhoun County 3 South Region 6 East South Central Division 3872 1454 1207 1729 2356 73.38710 0.9916 1 489 2020 24.207921 0.97860 1 20 168 11.90476 0.02541 0 718 1039 69.10491 0.93320 1 738 1207 61.14333 0.96900 1 113 725 15.58621 0.6035 0 664 3943 16.839970 0.6495 0 167 4.313016 0.05978 0 238 6.146694 0.02255 0 264 2359 11.19118 0.3027 0 94 263 35.74144 0.9050 1 46 3769 1.2204829 0.48250 0 1601 3872 41.34814 0.6572 0 1454 761 52.3383769 0.9504 1 65 4.4704264 0.6738 0 5 1207 0.4142502 0.2791 0 113 1207 9.362055 0.7004 0 1516 3872 39.15289 0.9860 1 4.19220 0.9133 3 1.77253 0.1304 1 0.6572 0.6511 0 3.5897 0.9337 2 10.21163 0.7885 6 3238 1459 1014 1082 1836 58.93246 0.9735 1 251 1403 17.890235 0.9767 1 31 155 20.000000 0.44920 0 515 859 59.953434 0.85540 1 546 1014 53.84615 0.95350 1 134 916 14.62882 0.7033 0 251 3238 7.751699 0.5588 0 167 5.157505 0.03597 0 169 5.219271 0.02111 0 323 1667.0000 19.37612 0.7205 0 94 277.0000 33.93502 0.9040 1 0 3164 0.0000000 0.09479 0 1045 3238.0000 32.27301 0.5125 0 1459 607 41.6038382 0.9185 1 65 4.4551062 0.6949 0 24 1014 2.3668639 0.57900 0 85 1014.0000 8.382643 0.6775 0 1402 3238 43.2983323 0.9876 1 4.16580 0.9263 3 1.77637 0.1225 1 0.5125 0.5082 0 3.85750 0.9661 2 10.31217 0.8160 6 0 0 0 0 0 Yes Census Tract 21.01, Calhoun County, Alabama 4968 92000 9312 153500 5762.88 106720 3549.12 0.6158587 46780 0.4383433 NA NA Calhoun County, Alabama Anniston-Oxford, AL MSA C1150
01015002300 01015 002300 AL Alabama Calhoun County 3 South Region 6 East South Central Division 3882 1861 1608 1366 3882 35.18805 0.7753 1 186 1539 12.085770 0.80740 1 284 1109 25.60866 0.35530 0 202 499 40.48096 0.39670 0 486 1608 30.22388 0.34700 0 727 2610 27.85441 0.8534 1 547 3706 14.759849 0.5669 0 716 18.444101 0.82530 1 904 23.286966 0.45720 0 719 2919 24.63172 0.8986 1 207 1191 17.38035 0.5923 0 0 3720 0.0000000 0.09298 0 490 3882 12.62236 0.3118 0 1861 38 2.0419130 0.4070 0 199 10.6931757 0.7836 1 52 1608 3.2338308 0.6986 0 166 1608 10.323383 0.7304 0 0 3882 0.00000 0.3640 0 3.35000 0.7384 3 2.86638 0.6919 2 0.3118 0.3089 0 2.9836 0.7289 1 9.51178 0.7100 6 3265 1774 1329 1103 3265 33.78254 0.7880 1 122 1422 8.579465 0.8131 1 101 844 11.966825 0.10960 0 126 485 25.979381 0.15930 0 227 1329 17.08051 0.11070 0 267 2122 12.58247 0.6388 0 328 3265 10.045942 0.6808 0 440 13.476263 0.36070 0 843 25.819296 0.74470 0 530 2422.0000 21.88274 0.8097 1 254 861.0000 29.50058 0.8574 1 0 3026 0.0000000 0.09479 0 811 3265.0000 24.83920 0.4221 0 1774 7 0.3945885 0.2444 0 338 19.0529876 0.8924 1 19 1329 1.4296464 0.44520 0 120 1329.0000 9.029345 0.7016 0 0 3265 0.0000000 0.1831 0 3.03140 0.6608 2 2.86729 0.7016 2 0.4221 0.4185 0 2.46670 0.4669 1 8.78749 0.6230 5 0 0 0 0 0 Yes Census Tract 23, Calhoun County, Alabama 15086 77500 21540 78500 17499.76 89900 4040.24 0.2308740 -11400 -0.1268076 120.54 131.82 Calhoun County, Alabama Anniston-Oxford, AL MSA C1150
01023956700 01023 956700 AL Alabama Choctaw County 3 South Region 6 East South Central Division 3011 1772 1179 1715 3011 56.95782 0.9531 1 266 890 29.887640 0.99100 1 267 1035 25.79710 0.36240 0 79 144 54.86111 0.73440 0 346 1179 29.34690 0.31850 0 738 2053 35.94739 0.9287 1 543 2904 18.698347 0.7133 0 569 18.897376 0.84040 1 648 21.521089 0.33840 0 813 2273 35.76771 0.9901 1 252 771 32.68482 0.8778 1 0 2880 0.0000000 0.09298 0 2455 3011 81.53437 0.8712 1 1772 38 2.1444695 0.4136 0 485 27.3702032 0.9349 1 72 1179 6.1068702 0.8435 1 109 1179 9.245123 0.6964 0 0 3011 0.00000 0.3640 0 3.90460 0.8597 3 3.13968 0.8131 3 0.8712 0.8631 1 3.2524 0.8387 2 11.16788 0.8840 9 3335 1912 1362 1135 3313 34.25898 0.7948 1 188 1147 16.390584 0.9686 1 212 1058 20.037807 0.45090 0 27 304 8.881579 0.02679 0 239 1362 17.54772 0.12350 0 466 2537 18.36815 0.7948 1 495 3335 14.842579 0.8413 1 791 23.718141 0.85250 1 613 18.380810 0.27840 0 884 2714.0000 32.57185 0.9752 1 230 918.0000 25.05447 0.7925 1 25 3103 0.8056719 0.41920 0 2637 3335.0000 79.07046 0.8436 1 1912 0 0.0000000 0.1079 0 758 39.6443515 0.9799 1 16 1362 1.1747430 0.40060 0 75 1362.0000 5.506608 0.5316 0 8 3335 0.2398801 0.4965 0 3.52300 0.7901 4 3.31780 0.8870 3 0.8436 0.8365 1 2.51650 0.4924 1 10.20090 0.8033 9 0 0 0 0 0 Yes Census Tract 9567, Choctaw County, Alabama 12737 60900 16852 63400 14774.92 70644 2077.08 0.1405815 -7244 -0.1025423 NA NA NA NA NA
01023957000 01023 957000 AL Alabama Choctaw County 3 South Region 6 East South Central Division 2567 1187 916 767 2567 29.87924 0.6933 0 145 1060 13.679245 0.86050 1 101 719 14.04729 0.04540 0 43 197 21.82741 0.09791 0 144 916 15.72052 0.02333 0 355 1704 20.83333 0.7366 0 289 2296 12.587108 0.4736 0 324 12.621737 0.51120 0 688 26.801714 0.68810 0 572 1746 32.76060 0.9809 1 121 636 19.02516 0.6414 0 5 2283 0.2190101 0.22520 0 1314 2567 51.18816 0.7225 0 1187 0 0.0000000 0.1224 0 335 28.2224094 0.9394 1 13 916 1.4192140 0.4834 0 70 916 7.641921 0.6353 0 0 2567 0.00000 0.3640 0 2.78733 0.5903 1 3.04680 0.7745 1 0.7225 0.7158 0 2.5445 0.5114 1 9.10113 0.6601 3 2077 1158 866 759 2072 36.63127 0.8256 1 61 780 7.820513 0.7726 1 106 735 14.421769 0.19760 0 11 131 8.396947 0.02525 0 117 866 13.51039 0.04053 0 351 1464 23.97541 0.8815 1 205 2077 9.870005 0.6729 0 402 19.354839 0.68820 0 496 23.880597 0.63430 0 466 1576.0000 29.56853 0.9544 1 154 612.0000 25.16340 0.7942 1 0 2002 0.0000000 0.09479 0 1018 2077.0000 49.01300 0.6638 0 1158 0 0.0000000 0.1079 0 439 37.9101900 0.9766 1 0 866 0.0000000 0.09796 0 42 866.0000 4.849884 0.4884 0 5 2077 0.2407318 0.4971 0 3.19313 0.7061 3 3.16589 0.8369 2 0.6638 0.6582 0 2.16796 0.3247 1 9.19078 0.6792 6 0 0 0 0 0 Yes Census Tract 9570, Choctaw County, Alabama 16224 51600 21740 74000 18819.84 59856 2920.16 0.1551639 14144 0.2363005 NA NA NA NA NA
01031010500 01031 010500 AL Alabama Coffee County 3 South Region 6 East South Central Division 4529 1950 1664 1649 4022 40.99950 0.8432 1 114 1424 8.005618 0.56260 0 309 1057 29.23368 0.48130 0 251 607 41.35091 0.41690 0 560 1664 33.65385 0.45740 0 1269 3370 37.65579 0.9387 1 516 4279 12.058892 0.4492 0 832 18.370501 0.82310 1 894 19.739457 0.23950 0 1023 3404 30.05288 0.9666 1 303 1112 27.24820 0.8108 1 43 4270 1.0070258 0.44510 0 1761 4529 38.88276 0.6383 0 1950 6 0.3076923 0.2576 0 276 14.1538462 0.8279 1 8 1664 0.4807692 0.2925 0 125 1664 7.512019 0.6289 0 507 4529 11.19452 0.9441 1 3.25110 0.7138 2 3.28510 0.8639 3 0.6383 0.6324 0 2.9510 0.7136 2 10.12550 0.7794 7 4815 2118 1731 1329 4470 29.73154 0.7256 0 147 1903 7.724645 0.7670 1 209 1256 16.640127 0.29310 0 208 475 43.789474 0.51620 0 417 1731 24.09012 0.33700 0 953 3728 25.56330 0.8985 1 668 4485 14.894091 0.8425 1 1053 21.869159 0.79500 1 766 15.908619 0.16760 0 1010 3719.0000 27.15784 0.9262 1 243 1133.0000 21.44748 0.7184 0 1 4577 0.0218484 0.19150 0 1643 4815.0000 34.12253 0.5321 0 2118 0 0.0000000 0.1079 0 475 22.4268178 0.9157 1 37 1731 2.1374928 0.55080 0 144 1731.0000 8.318891 0.6750 0 330 4815 6.8535826 0.9282 1 3.57060 0.8018 3 2.79870 0.6649 2 0.5321 0.5276 0 3.17760 0.7990 2 10.07900 0.7892 7 0 0 0 0 0 Yes Census Tract 105, Coffee County, Alabama 14641 88000 21367 78100 16983.56 102080 4383.44 0.2580990 -23980 -0.2349138 128.88 137.26 Coffee County, Alabama Dothan-Enterprise-Ozark, AL CSA CS222

Log NMTC and LIHTC Variables

svi_national_nmtc_df$Median_Income_10adj_log <- log(svi_national_nmtc_df$Median_Income_10adj)
svi_national_nmtc_df$Median_Income_19_log <- log(svi_national_nmtc_df$Median_Income_19)

svi_national_nmtc_df$Median_Home_Value_10adj_log = log(svi_national_nmtc_df$Median_Home_Value_10adj)
svi_national_nmtc_df$Median_Home_Value_19_log = log(svi_national_nmtc_df$Median_Home_Value_19)

svi_national_nmtc_df$housing_price_index10_log = log(svi_national_nmtc_df$housing_price_index10)
svi_national_nmtc_df$housing_price_index20_log = log(svi_national_nmtc_df$housing_price_index20)

svi_divisional_nmtc_df$Median_Income_10adj_log <- log(svi_divisional_nmtc_df$Median_Income_10adj)
svi_divisional_nmtc_df$Median_Income_19_log <- log(svi_divisional_nmtc_df$Median_Income_19)

svi_divisional_nmtc_df$Median_Home_Value_10adj_log = log(svi_divisional_nmtc_df$Median_Home_Value_10adj)
svi_divisional_nmtc_df$Median_Home_Value_19_log = log(svi_divisional_nmtc_df$Median_Home_Value_19)

svi_divisional_nmtc_df$housing_price_index10_log = log(svi_divisional_nmtc_df$housing_price_index10)
svi_divisional_nmtc_df$housing_price_index20_log = log(svi_divisional_nmtc_df$housing_price_index20)

svi_national_lihtc_df$Median_Income_10adj_log <- log(svi_national_lihtc_df$Median_Income_10adj)
svi_national_lihtc_df$Median_Income_19_log <- log(svi_national_lihtc_df$Median_Income_19)

svi_national_lihtc_df$Median_Home_Value_10adj_log = log(svi_national_lihtc_df$Median_Home_Value_10adj)
svi_national_lihtc_df$Median_Home_Value_19_log = log(svi_national_lihtc_df$Median_Home_Value_19)

svi_national_lihtc_df$housing_price_index10_log = log(svi_national_lihtc_df$housing_price_index10)
svi_national_lihtc_df$housing_price_index20_log = log(svi_national_lihtc_df$housing_price_index20)

svi_divisional_lihtc_df$Median_Income_10adj_log <- log(svi_divisional_lihtc_df$Median_Income_10adj)
svi_divisional_lihtc_df$Median_Income_19_log <- log(svi_divisional_lihtc_df$Median_Income_19)

svi_divisional_lihtc_df$Median_Home_Value_10adj_log = log(svi_divisional_lihtc_df$Median_Home_Value_10adj)
svi_divisional_lihtc_df$Median_Home_Value_19_log = log(svi_divisional_lihtc_df$Median_Home_Value_19)

svi_divisional_lihtc_df$housing_price_index10_log = log(svi_divisional_lihtc_df$housing_price_index10)
svi_divisional_lihtc_df$housing_price_index20_log = log(svi_divisional_lihtc_df$housing_price_index20)

Diff-in-Diff Models

NMTC Evaluation

Divisional SVI

# Create 2010 df, create post variable and set to 0, create year variable and set to 2010
nmtc_did10_div_svi <- svi_divisional_nmtc_df %>% 
  select(GEOID_2010_trt, cbsa, F_THEME1_10, F_THEME2_10, F_THEME3_10, F_THEME4_10, F_TOTAL_10, nmtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "nmtc_flag",
         "SVI_FLAG_COUNT_SES" = "F_THEME1_10",
         "SVI_FLAG_COUNT_HHCHAR" = "F_THEME2_10",
         "SVI_FLAG_COUNT_REM" = "F_THEME3_10",
         "SVI_FLAG_COUNT_HOUSETRANSPT" = "F_THEME4_10",
         "SVI_FLAG_COUNT_OVERALL" = "F_TOTAL_10") 

nrow(nmtc_did10_div_svi)
## [1] 1855
# Create 2010 df, create post variable and set to 0, create year variable and set to 2010
nmtc_did10_div_svi <- svi_divisional_nmtc_df %>% 
  select(GEOID_2010_trt, cbsa, F_THEME1_10, F_THEME2_10, F_THEME3_10, F_THEME4_10, F_TOTAL_10, nmtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "nmtc_flag",
         "SVI_FLAG_COUNT_SES" = "F_THEME1_10",
         "SVI_FLAG_COUNT_HHCHAR" = "F_THEME2_10",
         "SVI_FLAG_COUNT_REM" = "F_THEME3_10",
         "SVI_FLAG_COUNT_HOUSETRANSPT" = "F_THEME4_10",
         "SVI_FLAG_COUNT_OVERALL" = "F_TOTAL_10") 

nrow(nmtc_did10_div_svi)
## [1] 1855
# Create 2020 df, create post variable and set to 1, create year variable and set to 2020
nmtc_did20_div_svi <- svi_divisional_nmtc_df %>% 
  select(GEOID_2010_trt, cbsa, F_THEME1_20, F_THEME2_20, F_THEME3_20, F_THEME4_20, F_TOTAL_20, nmtc_flag) %>% 
  mutate(post = 1,
         year = 2020) %>%
  rename("treat" = "nmtc_flag",
         "SVI_FLAG_COUNT_SES" = "F_THEME1_20",
         "SVI_FLAG_COUNT_HHCHAR" = "F_THEME2_20",
         "SVI_FLAG_COUNT_REM" = "F_THEME3_20",
         "SVI_FLAG_COUNT_HOUSETRANSPT" = "F_THEME4_20",
         "SVI_FLAG_COUNT_OVERALL" = "F_TOTAL_20"
  )


nrow(nmtc_did20_div_svi)
## [1] 1855
nmtc_diff_in_diff_div_svi <- bind_rows(nmtc_did10_div_svi, nmtc_did20_div_svi)

nmtc_diff_in_diff_div_svi <- nmtc_diff_in_diff_div_svi %>% arrange(post, treat, GEOID_2010_trt)

nrow(nmtc_diff_in_diff_div_svi)
## [1] 3710

Divisional Median Income

# Create 2010 df, create post variable and set to 0, create year variable and set to 2010, remove any tracts that don't have data for 2010 and 2019
nmtc_did10_div_inc <- svi_divisional_nmtc_df %>% 
  filter(!is.na(Median_Income_10adj_log)) %>% filter(!is.na(Median_Income_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Income_10adj_log, nmtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "nmtc_flag",
         "MEDIAN_INCOME" = "Median_Income_10adj_log") 


nrow(nmtc_did10_div_inc)
## [1] 1852
# Create 2019 df, create post variable and set to 1, create year variable and set to 2019, remove any tracts that don't have data for 2010 and 2019
nmtc_did19_div_inc <- svi_divisional_nmtc_df %>% 
  filter(!is.na(Median_Income_10adj_log)) %>% filter(!is.na(Median_Income_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Income_19_log, nmtc_flag) %>% 
  mutate(post = 1,
         year = 2019) %>%
  rename("treat" = "nmtc_flag",
         "MEDIAN_INCOME" = "Median_Income_19_log") 


nrow(nmtc_did19_div_inc)
## [1] 1852
nmtc_diff_in_diff_div_inc <- bind_rows(nmtc_did10_div_inc, nmtc_did19_div_inc)

nmtc_diff_in_diff_div_inc <- nmtc_diff_in_diff_div_inc %>% arrange(post, treat, GEOID_2010_trt)

nrow(nmtc_diff_in_diff_div_inc)
## [1] 3704

Divisional Home Value

nmtc_did10_div_mhv <- svi_divisional_nmtc_df %>% 
  filter(!is.na(Median_Home_Value_10adj_log)) %>% filter(!is.na(Median_Home_Value_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Home_Value_10adj_log, nmtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "nmtc_flag",
         "MEDIAN_HOME_VALUE" = "Median_Home_Value_10adj_log") 


nrow(nmtc_did10_div_mhv)
## [1] 1824
nmtc_did19_div_mhv <- svi_divisional_nmtc_df %>% 
  filter(!is.na(Median_Home_Value_10adj_log)) %>% filter(!is.na(Median_Home_Value_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Home_Value_19_log, nmtc_flag) %>% 
  mutate(post = 1,
         year = 2019) %>%
  rename("treat" = "nmtc_flag",
         "MEDIAN_HOME_VALUE" = "Median_Home_Value_19_log") 


nrow(nmtc_did19_div_mhv)
## [1] 1824
nmtc_diff_in_diff_div_mhv <- bind_rows(nmtc_did10_div_mhv, nmtc_did19_div_mhv)

nmtc_diff_in_diff_div_mhv <- nmtc_diff_in_diff_div_mhv %>% arrange(post, treat, GEOID_2010_trt)

nrow(nmtc_diff_in_diff_div_mhv)
## [1] 3648

Divisional House Price Index

nmtc_did10_div_hpi <- svi_divisional_nmtc_df %>% 
  filter(!is.na(housing_price_index10_log)) %>% filter(!is.na(housing_price_index20_log)) %>%
  select(GEOID_2010_trt, cbsa, housing_price_index10_log, nmtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "nmtc_flag",
         "HOUSE_PRICE_INDEX" = "housing_price_index10_log") 


nrow(nmtc_did10_div_hpi)
## [1] 1147
nmtc_did20_div_hpi <- svi_divisional_nmtc_df %>% 
  filter(!is.na(housing_price_index10_log)) %>% filter(!is.na(housing_price_index20_log)) %>%
  select(GEOID_2010_trt, cbsa, housing_price_index20_log, nmtc_flag) %>% 
  mutate(post = 1,
         year = 2020) %>%
  rename("treat" = "nmtc_flag",
         "HOUSE_PRICE_INDEX" = "housing_price_index20_log") 


nrow(nmtc_did20_div_hpi)
## [1] 1147
nmtc_diff_in_diff_div_hpi <- bind_rows(nmtc_did10_div_hpi, nmtc_did20_div_hpi)

nmtc_diff_in_diff_div_hpi <- nmtc_diff_in_diff_div_hpi %>% arrange(post, treat, GEOID_2010_trt)

nrow(nmtc_diff_in_diff_div_hpi)
## [1] 2294

NMTC Divisional Model

# SVI & Economic Models

m1_nmtc_div <- lm( SVI_FLAG_COUNT_SES ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_svi )

m2_nmtc_div <- lm( SVI_FLAG_COUNT_HHCHAR ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_svi )

m3_nmtc_div <- lm( SVI_FLAG_COUNT_REM ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_svi )

m4_nmtc_div <- lm( SVI_FLAG_COUNT_HOUSETRANSPT ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_svi )

m5_nmtc_div <- lm( SVI_FLAG_COUNT_OVERALL  ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_svi)

m6_nmtc_div <- lm( MEDIAN_INCOME ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_inc )

m7_nmtc_div <- lm( MEDIAN_HOME_VALUE ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_mhv )

m8_nmtc_div <- lm( HOUSE_PRICE_INDEX ~ treat + post + treat*post + cbsa, data=nmtc_diff_in_diff_div_hpi )

# Add all models to a list
models <- list(
  
  "SES" = m1_nmtc_div,
  "HHChar"  = m2_nmtc_div,
  "REM" = m3_nmtc_div,
  "HOUSETRANSPT" = m4_nmtc_div,
  "OVERALL" = m5_nmtc_div,
  "Median Income (USD, logged)" = m6_nmtc_div,
  "Median Home Value (USD, logged)" = m7_nmtc_div,
  "House Price Index (logged)" = m8_nmtc_div
)


# Display model results
modelsummary(models,  fmt = 2, stars = c('*' = .05, '**' = .01, '***' = .001), coef_omit = "cbsa", gof_omit = "IC|Log",
             notes = list('All models include metro-level fixed effects by core-based statistical area (cbsa).'),
             title = paste0("Differences-in-Differences Linear Regression Analysis of NMTC in ", census_division)) %>%
  group_tt(j = list("Social Vulnerability" = 2:6, "Economic Outcomes" = 7:9))
Differences-in-Differences Linear Regression Analysis of NMTC in West North Central Division
Social Vulnerability Economic Outcomes
SES HHChar REM HOUSETRANSPT OVERALL Median Income (USD, logged) Median Home Value (USD, logged) House Price Index (logged)
(Intercept) 1.67 1.67* 0.28 3.16*** 6.77*** 9.95*** 11.66*** 4.95***
(1.04) (0.73) (0.30) (0.75) (2.04) (0.20) (0.24) (0.18)
treat 1.01*** 0.42*** 0.21*** 0.31*** 1.95*** -0.12*** -0.11*** -0.07**
(0.11) (0.07) (0.03) (0.08) (0.21) (0.02) (0.02) (0.03)
post -0.02 -0.02 0.01 -0.00 -0.03 0.05*** -0.07*** 0.28***
(0.06) (0.04) (0.02) (0.04) (0.12) (0.01) (0.01) (0.01)
treat × post -0.33* -0.16 0.00 0.07 -0.42 0.00 -0.06 0.01
(0.14) (0.10) (0.04) (0.10) (0.28) (0.03) (0.03) (0.03)
Num.Obs. 2828 2828 2828 2828 2828 2828 2772 1868
R2 0.194 0.171 0.312 0.112 0.178 0.211 0.518 0.418
R2 Adj. 0.165 0.140 0.287 0.080 0.148 0.182 0.500 0.388
RMSE 1.44 1.00 0.41 1.03 2.82 0.28 0.33 0.25
  • p < 0.05, ** p < 0.01, *** p < 0.001
All models include metro-level fixed effects by core-based statistical area (cbsa).

Differences-in-Differences Linear Regression Analysis of NMTC in West North Central Division

In the West North Central division, the DiD interaction (treat × post) is –0.33 (p < .05) on the SES flag count—indicating that NMTC-funded tracts experienced a modest but statistically significant reduction in socioeconomic vulnerability relative to non-funded tracts. No other SVI themes or economic outcomes showed significant DiD effects at the 5% level.

Visualize SES

status <- c("NMTC Non-Participant", 
             "NMTC Participant Counterfactual", 
             "NMTC Participant", 
             "NMTC Non-Participant", 
             "NMTC Participant Counterfactual", 
             "NMTC Participant")
year <- c(2010, 
          2010, 
          2010, 
          2020, 
          2020, 
          2020)
outcome <- c(m1_nmtc_div$coefficients[1], 
           m1_nmtc_div$coefficients[1] + m1_nmtc_div$coefficients[2], 
           m1_nmtc_div$coefficients[1] + m1_nmtc_div$coefficients[2],
           m1_nmtc_div$coefficients[1] + m1_nmtc_div$coefficients[3], 
           m1_nmtc_div$coefficients[1] + m1_nmtc_div$coefficients[2] + m1_nmtc_div$coefficients[3],
           m1_nmtc_div$coefficients[1] + m1_nmtc_div$coefficients[2] + m1_nmtc_div$coefficients[3] + m1_nmtc_div$coefficients[length(m1_nmtc_div$coefficients)])

svidiv_viz_ses_nmtc <- data.frame(status, year, outcome)
svidiv_viz_ses_nmtc$outcome_label <- round(svidiv_viz_ses_nmtc$outcome, 2)
svidiv_viz_ses_nmtc
##                            status year  outcome outcome_label
## 1            NMTC Non-Participant 2010 1.671491          1.67
## 2 NMTC Participant Counterfactual 2010 2.677291          2.68
## 3                NMTC Participant 2010 2.677291          2.68
## 4            NMTC Non-Participant 2020 1.649995          1.65
## 5 NMTC Participant Counterfactual 2020 2.655795          2.66
## 6                NMTC Participant 2020 2.322709          2.32
slopegraph_plot (svidiv_viz_ses_nmtc, "NMTC Participant", "NMTC Non-Participant","Impact of NMTC Program on SVI SES Flag Count", paste0(census_division, " | 2010 - 2020"))

The slopegraph shows non-participant tracts’ SES flags remain essentially flat from 2010 to 2020, while NMTC tracts decline from ~2.68 to ~2.32 flags, mirroring our estimated, –0.33 DiD effect.

Visualize Median Home Value

status <- c("NMTC Non-Participant", 
             "NMTC Participant Counterfactual", 
             "NMTC Participant", 
             "NMTC Non-Participant", 
             "NMTC Participant Counterfactual", 
             "NMTC Participant")
year <- c(2010, 
          2010, 
          2010, 
          2020, 
          2020, 
          2020)
outcome <- c(exp(m7_nmtc_div$coefficients[1]), 
           exp(m7_nmtc_div$coefficients[1])*exp(m7_nmtc_div$coefficients[2]), 
           exp(m7_nmtc_div$coefficients[1])*exp(m7_nmtc_div$coefficients[2]),
           exp(m7_nmtc_div$coefficients[1])*exp(m7_nmtc_div$coefficients[3]), 
           exp(m7_nmtc_div$coefficients[1])*exp(m7_nmtc_div$coefficients[2])*exp(m7_nmtc_div$coefficients[3]),
           exp(m7_nmtc_div$coefficients[1])*exp(m7_nmtc_div$coefficients[2])*exp(m7_nmtc_div$coefficients[3])*exp(m7_nmtc_div$coefficients[length(m7_nmtc_div$coefficients)])
)

svidiv_viz_medhmv_nmtc <- data.frame(status, year, outcome)

### Note that instead of rounding like we did for SVI variables, we will be formatting our outcome as US dollars
svidiv_viz_medhmv_nmtc$outcome_label <- scales::dollar_format()(svidiv_viz_medhmv_nmtc$outcome)

svidiv_viz_medhmv_nmtc
##                            status year   outcome outcome_label
## 1            NMTC Non-Participant 2010 115814.93      $115,815
## 2 NMTC Participant Counterfactual 2010 103578.32      $103,578
## 3                NMTC Participant 2010 103578.32      $103,578
## 4            NMTC Non-Participant 2020 107780.24      $107,780
## 5 NMTC Participant Counterfactual 2020  96392.55       $96,393
## 6                NMTC Participant 2020  90602.19       $90,602
slopegraph_plot (svidiv_viz_medhmv_nmtc, "NMTC Participant", "NMTC Non-Participant", "Impact of NMTC Program on Average Median Home Value", paste0(census_division, " | 2010 - 2020"))

The home-value slopegraph reveals that participant tracts’ median home values rose from $103,578 in 2010 to $90,602 in 2020 (inflation-adjusted), compared with 115,815 to 107,780 in non-participant tracts, suggesting smaller gains in NMTC areas over the decade.

LIHTC Evaluation

Divisional SVI

# Create 2010 df, create post variable and set to 0, create year variable and set to 2010
lihtc_did10_div_svi <- svi_divisional_lihtc_df %>% 
  select(GEOID_2010_trt, cbsa, F_THEME1_10, F_THEME2_10, F_THEME3_10, F_THEME4_10, F_TOTAL_10, lihtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "lihtc_flag",
         "SVI_FLAG_COUNT_SES" = "F_THEME1_10",
         "SVI_FLAG_COUNT_HHCHAR" = "F_THEME2_10",
         "SVI_FLAG_COUNT_REM" = "F_THEME3_10",
         "SVI_FLAG_COUNT_HOUSETRANSPT" = "F_THEME4_10",
         "SVI_FLAG_COUNT_OVERALL" = "F_TOTAL_10") 

nrow(lihtc_did10_div_svi)
## [1] 118
# Create 2020 df, create post variable and set to 1, create year variable and set to 2020
lihtc_did20_div_svi <- svi_divisional_lihtc_df %>% 
  select(GEOID_2010_trt, cbsa, F_THEME1_20, F_THEME2_20, F_THEME3_20, F_THEME4_20, F_TOTAL_20, lihtc_flag) %>% 
  mutate(post = 1,
         year = 2020) %>%
  rename("treat" = "lihtc_flag",
         "SVI_FLAG_COUNT_SES" = "F_THEME1_20",
         "SVI_FLAG_COUNT_HHCHAR" = "F_THEME2_20",
         "SVI_FLAG_COUNT_REM" = "F_THEME3_20",
         "SVI_FLAG_COUNT_HOUSETRANSPT" = "F_THEME4_20",
         "SVI_FLAG_COUNT_OVERALL" = "F_TOTAL_20"
  )


nrow(lihtc_did20_div_svi)
## [1] 118
lihtc_diff_in_diff_div_svi <- bind_rows(lihtc_did10_div_svi, lihtc_did20_div_svi)

lihtc_diff_in_diff_div_svi <- lihtc_diff_in_diff_div_svi %>% arrange(post, treat, GEOID_2010_trt)

nrow(lihtc_diff_in_diff_div_svi)
## [1] 236

Divisional Median Income

# Create 2010 df, create post variable and set to 0, create year variable and set to 2010, remove any tracts that don't have data for 2010 and 2019
lihtc_did10_div_inc <- svi_divisional_lihtc_df %>% 
  filter(!is.na(Median_Income_10adj_log)) %>% filter(!is.na(Median_Income_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Income_10adj_log, lihtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "lihtc_flag",
         "MEDIAN_INCOME" = "Median_Income_10adj_log") 


nrow(lihtc_did10_div_inc)
## [1] 117
# Create 2019 df, create post variable and set to 1, create year variable and set to 2019, remove any tracts that don't have data for 2010 and 2019
lihtc_did19_div_inc <- svi_divisional_lihtc_df %>% 
  filter(!is.na(Median_Income_10adj_log)) %>% filter(!is.na(Median_Income_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Income_19_log, lihtc_flag) %>% 
  mutate(post = 1,
         year = 2019) %>%
  rename("treat" = "lihtc_flag",
         "MEDIAN_INCOME" = "Median_Income_19_log") 


nrow(lihtc_did19_div_inc)
## [1] 117
lihtc_diff_in_diff_div_inc <- bind_rows(lihtc_did10_div_inc, lihtc_did19_div_inc)

lihtc_diff_in_diff_div_inc <- lihtc_diff_in_diff_div_inc %>% arrange(post, treat, GEOID_2010_trt)

nrow(lihtc_diff_in_diff_div_inc)
## [1] 234

Divisional Median Home Value

lihtc_did10_div_mhv <- svi_divisional_lihtc_df %>% 
  filter(!is.na(Median_Home_Value_10adj_log)) %>% filter(!is.na(Median_Home_Value_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Home_Value_10adj_log, lihtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "lihtc_flag",
         "MEDIAN_HOME_VALUE" = "Median_Home_Value_10adj_log") 


nrow(lihtc_did10_div_mhv)
## [1] 111
lihtc_did19_div_mhv <- svi_divisional_lihtc_df %>% 
  filter(!is.na(Median_Home_Value_10adj_log)) %>% filter(!is.na(Median_Home_Value_19_log)) %>%
  select(GEOID_2010_trt, cbsa, Median_Home_Value_19_log, lihtc_flag) %>% 
  mutate(post = 1,
         year = 2019) %>%
  rename("treat" = "lihtc_flag",
         "MEDIAN_HOME_VALUE" = "Median_Home_Value_19_log") 


nrow(lihtc_did19_div_mhv)
## [1] 111
lihtc_diff_in_diff_div_mhv <- bind_rows(lihtc_did10_div_mhv, lihtc_did19_div_mhv)

lihtc_diff_in_diff_div_mhv <- lihtc_diff_in_diff_div_mhv %>% arrange(post, treat, GEOID_2010_trt)

nrow(lihtc_diff_in_diff_div_mhv)
## [1] 222

Divisional House Price Index

lihtc_did10_div_hpi <- svi_divisional_lihtc_df %>% 
  filter(!is.na(housing_price_index10_log)) %>% filter(!is.na(housing_price_index20_log)) %>%
  select(GEOID_2010_trt, cbsa, housing_price_index10_log, lihtc_flag) %>% 
  mutate(post = 0,
         year = 2010) %>%
  rename("treat" = "lihtc_flag",
         "HOUSE_PRICE_INDEX" = "housing_price_index10_log") 


nrow(lihtc_did10_div_hpi)
## [1] 45
lihtc_did20_div_hpi <- svi_divisional_lihtc_df %>% 
  filter(!is.na(housing_price_index10_log)) %>% filter(!is.na(housing_price_index20_log)) %>%
  select(GEOID_2010_trt, cbsa, housing_price_index20_log, lihtc_flag) %>% 
  mutate(post = 1,
         year = 2020) %>%
  rename("treat" = "lihtc_flag",
         "HOUSE_PRICE_INDEX" = "housing_price_index20_log") 


nrow(lihtc_did20_div_hpi)
## [1] 45
lihtc_diff_in_diff_div_hpi <- bind_rows(lihtc_did10_div_hpi, lihtc_did20_div_hpi)

lihtc_diff_in_diff_div_hpi <- lihtc_diff_in_diff_div_hpi %>% arrange(post, treat, GEOID_2010_trt)

nrow(lihtc_diff_in_diff_div_hpi)
## [1] 90

LIHTC Divisional Model

# SVI & Economic Models

m1_lihtc_div <- lm( SVI_FLAG_COUNT_SES ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_svi )

m2_lihtc_div <- lm( SVI_FLAG_COUNT_HHCHAR ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_svi )

m3_lihtc_div <- lm( SVI_FLAG_COUNT_REM ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_svi )

m4_lihtc_div <- lm( SVI_FLAG_COUNT_HOUSETRANSPT ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_svi )

m5_lihtc_div <- lm( SVI_FLAG_COUNT_OVERALL  ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_svi)

m6_lihtc_div <- lm( MEDIAN_INCOME ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_inc )

m7_lihtc_div <- lm( MEDIAN_HOME_VALUE ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_mhv )

m8_lihtc_div <- lm( HOUSE_PRICE_INDEX ~ treat + post + treat*post + cbsa, data=lihtc_diff_in_diff_div_hpi )

# Add all models to a list
models <- list(
  
  "SES" = m1_lihtc_div,
  "HHChar"  = m2_lihtc_div,
  "REM" = m3_lihtc_div,
  "HOUSETRANSPT" = m4_lihtc_div,
  "OVERALL" = m5_lihtc_div,
  "Median Income (USD, logged)" = m6_lihtc_div,
  "Median Home Value (USD, logged)" = m7_lihtc_div,
  "House Price Index (logged)" = m8_lihtc_div
)


# Display model results
modelsummary(models,  fmt = 2, stars = c('*' = .05, '**' = .01, '***' = .001), coef_omit = "cbsa", gof_omit = "IC|Log",
             notes = list('All models include metro-level fixed effects by core-based statistical area (cbsa).'),
             title = paste0("Differences-in-Differences Linear Regression Analysis of LIHTC in ", census_division)) %>%
  group_tt(j = list("Social Vulnerability" = 2:6, "Economic Outcomes" = 7:9))
Differences-in-Differences Linear Regression Analysis of LIHTC in West North Central Division
Social Vulnerability Economic Outcomes
SES HHChar REM HOUSETRANSPT OVERALL Median Income (USD, logged) Median Home Value (USD, logged) House Price Index (logged)
(Intercept) 2.69*** 0.46 0.34*** 2.91*** 6.40*** 9.10*** 12.43*** 5.11***
(0.40) (0.39) (0.10) (0.34) (0.78) (0.13) (0.18) (0.23)
treat 0.30 0.08 -0.05 0.30 0.63 0.11 0.16 -0.24
(0.26) (0.25) (0.06) (0.22) (0.50) (0.09) (0.10) (0.12)
post -0.37* -0.26 -0.01 -0.16 -0.80** 0.13** -0.11 0.34***
(0.15) (0.14) (0.04) (0.12) (0.29) (0.05) (0.06) (0.08)
treat × post -0.33 0.26 0.06 0.01 0.00 0.06 0.03 0.18
(0.34) (0.33) (0.08) (0.29) (0.66) (0.11) (0.13) (0.16)
Num.Obs. 212 212 212 212 212 212 200 88
R2 0.349 0.496 0.670 0.391 0.465 0.407 0.732 0.539
R2 Adj. 0.266 0.432 0.627 0.313 0.396 0.331 0.695 0.419
RMSE 0.91 0.88 0.22 0.77 1.77 0.30 0.34 0.28
  • p < 0.05, ** p < 0.01, *** p < 0.001
All models include metro-level fixed effects by core-based statistical area (cbsa).

Differences-in-Differences Linear Regression Analysis of LIHTC in West North Central Division

Results from the LIHTC divisional model show that, while all tracts experienced a modest but statistically significant decrease in SES-related vulnerability (post = –0.37, p < .05) and in overall SVI flag count (post = –0.80, p < .01) between 2010 and 2020, the treatment-by-period interaction (“treat × post”) is small and never reaches significance across any of the five SVI dimensions. In other words, although social vulnerability declined over time in this division, LIHTC-supported tracts did not exhibit an additional differential change in SVI relative to non-participating tracts.